An Acoustic Emission Method for Assessing the Degree of Degradation of Mechanical Properties and Residual Life of Metal Structures under Complex Dynamic Deformation Stresses
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33919021
PubMed Central
PMC8122432
DOI
10.3390/ma14092090
PII: ma14092090
Knihovny.cz E-zdroje
- Klíčová slova
- acoustic emission, complex loads, condition, deformation, identification, mechanical properties, residual life,
- Publikační typ
- časopisecké články MeSH
An acoustic emission method for assessing the degree of degradation of mechanical properties under conditions of complex dynamic deformation stresses is proposed. It has been shown that changing the operating conditions of metal structures, peak loads, external collisions, and thermally changing loads, which cannot be taken into account, leads to uncertainty and unpredictable structural changes in the material. This in turn makes it difficult to identify the state of the structure material to ensure trouble-free operation of the equipment. Changes in the mechanical properties under difficult loading conditions are identified by polynomial approximation of the results of AE measurements and the construction of boundary curves separating the operability region from the fracture region. This is achieved by approximating the experimental dependences of the acoustic parameters for various types of loading. This approach significantly expands the capabilities of the technical means of identification systems of metal structures, and in particular, allows the current state of the equipment and its suitability for further operation to be assessed without stopping the equipment in real time. It is of interest not only to fix the damage, but also to diagnose the processes of reducing the mechanical properties during the operation of the equipment.
Zobrazit více v PubMed
Pawlowski W., Kaczmarek L., Louda P. Theoretical and experimental modal analysis of the cylinder unit filled with PUR foam. Oper. Reliab. 2016;18:428–435. doi: 10.17531/ein.2016.3.15. DOI
Kumar R., Kansal T. Propagation of plane waves and fundamental solution in the theories of thermoelastic diffusive materials with voids. Int. J. Appl. Math. Mech. 2012;8:84–103.
Surace C., Bovsunovsky A. The use of frequency ratios to diagnose structural damage in varying environmental conditions. Mech. Syst. Signal Process. 2020;136:106523. doi: 10.1016/j.ymssp.2019.106523. DOI
Zagirnyak M., Alieksieieva I., Konoh I., Korenkova T. Extreme control system for pump complex by the criterion of maximum efficiency. Tech. Electrodyn. 2019;1:79–84. doi: 10.15407/techned2019.01.079. DOI
Li B., Guo X., Fang H., Ren J., Yang K., Wang F., Tan P. Prediction equation for maximum stress of concrete drainage pipelines subjected to various damages and complex service conditions. Constr. Build. Mater. 2020;264:120238. doi: 10.1016/j.conbuildmat.2020.120238. DOI
He Y., Li M., Meng Z., Chen S., Huang S., Hu Y., Zou X. An overview of acoustic emission inspection and monitoring technology in the key components of renewable energy systems. Mech. Syst. Signal Process. 2021;148:107146. doi: 10.1016/j.ymssp.2020.107146. DOI
Matunin V. Methods and Means of an Ugly Express Assessment of the Mechanical Properties of Structural Materials. MEI; Moscow, Russia: 2001. p. 94.
Pasternak M., Jasek K., Grabka M. Surface acoustic waves application for gas leakage detection. Diagnostyka. 2020;21:35–39. doi: 10.29354/diag/116078. DOI
Rajabi A., Omidi Moaf F., Abdelgader H. Evaluation of mechanical properties of two-stage concrete and conventional concrete using nondestructive tests. J. Mater. Civil Eng. 2020;32:04020185. doi: 10.1061/(ASCE)MT.1943-5533.0003247. DOI
Liang J., Gu X. Development and application of a non-destructive pavement testing system based on linear structured light three-dimensional measurement. Constr. Build. Mater. 2020;260:119919. doi: 10.1016/j.conbuildmat.2020.119919. DOI
Kaczmarek Ł., Kula P., Warga T., Kołodziejczyk Ł., Louda P., Borůvková K., Niedzielski P., Szymański W., Voleský L., Pawłowski W., et al. Creation of a 3D structure based on the high strength metallurgical graphene. Surf. Rev. Lett. 2019;26:1850206. doi: 10.1142/S0218625X18502062. DOI
Louda P., Vrkoslavová-Schmidová L., Malec J. Analysis of surface integrity of grinded gears using barkhausen noise analysis and X-ray diffraction; Proceedings of the 40th Annual Review of Progress in Quantitative Nondestructive Evaluation; Melville, NY, USA. 20–25 July 2014; pp. 1280–1286.
Macevityi V., Vakulenko K., Kazak I. On differences in mechanisms of metal fracture in conditions of low-cycle and high-cycle fatigue. J. Mech. Eng. 2014;17:60–67.
Naizabekov A., Lezhnev S., Panin E. Experimental study of energy force parameters of combined process “rolling-eca-pressing”. Mater. Sci. Forum. 2019;946:850–855. doi: 10.4028/www.scientific.net/MSF.946.850. DOI
Lefebvre T., Wartelle-Bladou C., Wong P., Sebastiani G., Giard J., Castel H., Murphy-Lavallée J., Olivié D., Ilinca A., Sylvestre M., et al. Prospective comparison of transient, point shear wave, and magnetic resonance elastography for staging liver fibrosis. Eur. Radiol. 2019;29:6477–6488. doi: 10.1007/s00330-019-06331-4. PubMed DOI
Marasanov V.V., Sharko A.V., Sharko A.A., Stepanchikov D.M. Modeling of spectrum of acoustic-emission signals in dynamic deformation processes of medium with microstructure; Proceedings of the IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO); Kyiv, Ukraine. 16–18 April 2019; pp. 718–723.
Hysek S., Frydrych M., Herclík M., Louda P., Fridrichová L., Van S., Chi H. Fire-resistant sandwich-structured composite material based on alternative materials and its physical and mechanical properties. Materials. 2019;12:1432. doi: 10.3390/ma12091432. PubMed DOI PMC
Sapronov O.O., Buketov A.V., Marushchak P.O., Panin S.V., Brailo M.V., Yakushchenko S.V., Sapronova A.V., Leshchenko O.V., Menou A. Research of crack initiation and propagation under loading for providing impact resilience of protective coating. Funct. Mater. 2019;26:114–120. doi: 10.15407/fm26.01.114. DOI
Peng X., Zhao Y., Small M. Identification and prediction of bifurcation tipping points using complex networks based on quasi-isometric mapping. Phys. A Stat. Mech. Appl. 2020;560:125108. doi: 10.1016/j.physa.2020.125108. DOI
Maji G., Mandal S., Sen S. A systematic survey on influential spreaders identification in complex networks with a focus on K-shell based techniques. Expert Syst. Appl. 2020;161:113681. doi: 10.1016/j.eswa.2020.113681. DOI
Chen S., Wang Z., Yan W. Identification and characteristic analysis of powder ejected from a lithium ion battery during thermal runaway at elevated temperatures. J. Hazard. Mater. 2020;400:123169. doi: 10.1016/j.jhazmat.2020.123169. PubMed DOI
Zhang Y., Ma M., Jin Z. Backtracking search algorithm with competitive learning for identification of unknown parameters of photovoltaic systems. Expert Syst. Appl. 2020;160:113750. doi: 10.1016/j.eswa.2020.113750. DOI
Ding Z., Fu K., Deng W., Li J., Zhongrong L. A modified Artificial Bee Colony algorithm for structural damage identification under varying temperature based on a novel objective function. Appl. Math. Model. 2020;88:122–141. doi: 10.1016/j.apm.2020.06.039. DOI
Bronovets M., Volodin N., Mishin Y. New materials in semiconductor tensometry. Mater. Lett. 2020;267:127467. doi: 10.1016/j.matlet.2020.127467. DOI
Fomichev P., Zarutskiy A., Lyovin A. Improving Method for Measuring Engine Thrust with Tensometry Data. Stud. Syst. Decis. Control. 2020;298:51–67.
Fomichev P., Zarutskiy A., Lyovin A. Researches of the Stressed-Deformed State of the Power Structures of the Plane. Stud. Syst. Decis. Control. 2020;298:37–49.
Sajadi A., Preece R., Milanović J. Identification of transient stability boundaries for power systems with multidimensional uncertainties using index-specific parametric space. Int. J. Electr. Power Energy Syst. 2020;123:106152. doi: 10.1016/j.ijepes.2020.106152. DOI
Ghimbaseanu I. Comparative analysis of an method for calculating the Parametres of Mecahnical tensile strength testing. Metal. Int. 2012;17:110–112.
Nosov V. The Estimation of Strength and Lifetime of Welded Fabrication Using the Acoustic Emission Method. Russian. J. Nondestruct. Test. 2009;2:58–66.
Čapek J., Knapek M., Minárik P., Dittrich J., Máthis K. Characterization of Deformation Mechanisms in Mg Alloys by Advanced Acoustic Emission Methods. Metals. 2018;8:644. doi: 10.3390/met8080644. DOI
Jaskowska-Lemańska J., Przesmycka E. Semi-Destructive and Non-Destructive Tests of Timber Structure of Various Moisture Contents. Materials. 2021;14:96 PubMed PMC
Kot P., Muradov M., Gkantou M., Kamaris G.S., Hashim K., Yeboah D. Recent Advancements in Non-Destructive Testing Techniques for Structural Health Monitoring. Appl. Sci. 2021;11:2750. doi: 10.3390/app11062750. DOI
Marasanov V., Sharko A., Stepanchikov D. Model of the Operator Dynamic Process of Acoustic Emission Occurrence While of Materials Deforming. In: Lytvynenko V., Babichev S., editors. Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2019. Advances in Intelligent Systems of Computing. Volume 1020. Springer; Cham, Switzerland: 2020. pp. 48–64.
Chernov D. An Algorithm for Determining the Onset of Plastic Deformation Based on the Micromechanical Model of Acoustic Emission. Vestn. Moscow Power Eng. Inst. 2016;3:3–17.
Buketov A., Brailo M., Yakushchenko S., Sapronova A. Development of Epoxy-Polyester Composite with Improved Thermophysical Properties for Restoration of Details of Sea and River Transport. Adv. Mater. Sci. Eng. 2018;2018:6378782. doi: 10.1155/2018/6378782. DOI
Buketov A.V., Brailo M.V., Yakushchenko S.V., Sapronov O.O., Smetankin S.O. The formulation of epoxy-polyester matrix with improved physical and mechanical properties for restoration of means of sea and river transport. J. Mar. Eng. Technol. 2020;19:109–114. doi: 10.1080/20464177.2018.1530171. DOI
Stroh J., Sediako D., Hanes T., Anderson K., Monroe A. The Effects of Heat Treatment on the Microstructure and Tensile Properties of an HPDC Marine Transmission Gearcase. Metals. 2021;11:517. doi: 10.3390/met11030517. DOI
Zhang R., Guo L., Li W. Combining Thermal Loading System with Acoustic Emission Technology to Acquire the Complete Stress-Deformation Response of Plain Concrete in Direct Tension. Materials. 2021;14:602. doi: 10.3390/ma14030602. PubMed DOI PMC
Morscher G.N., Han Z. Damage Determination in Ceramic Composites Subject to Tensile Fatigue Using Acoustic Emission. Materials. 2018;11:2477. doi: 10.3390/ma11122477. PubMed DOI PMC
Zhang Z., Wang H., Yu G., Zhao J. Research on Four-Point Air Bending Process and Contour Detection Method for JCO Forming Process of LSAW Pipes. Metals. 2019;9:859. doi: 10.3390/met9080859. DOI
Liu T., Zhang Y., Chen Y., Du Z., Chen H., Yang Q., Song B. Influence of Wavy Bending on Microstructure and Mechanical Properties of a Rolled AZ31 Sheet. Metals. 2020;10:173. doi: 10.3390/met10020173. DOI
Delyavskyy M., Opanasovych V., Seliverstov R., Bilash O. A Symmetric Three-Layer Plate with Two Coaxial Cracks under Pure Bending. Appl. Sci. 2021;11:2859. doi: 10.3390/app11062859. DOI
Yang K., Li D., He Z., Zhou H., Li J. Study on Acoustic Emission Characteristics of Low-Temperature Asphalt Concrete Cracking Damage. Materials. 2021;14:881. doi: 10.3390/ma14040881. PubMed DOI PMC
Bigus G., Daniev Y. Technical Diagnostics of Hazardous Production Facilities. Nauka; Moscow, Russia: 2010. p. 192.
Zubov O.E. Possibility of Estimation of Metalware Remaining Life on Basis of Test Loading Results with Acoustic Emission Monitoring. Civ. Aviat. High Technol. 2014;206:103–106.
Luzina N. Acoustic Emission Control Method for Assessing the Degree of Degradation of Mechanical Properties and Residual Resource of Tube Steels. Sci. Tech. J. Inf. Technol. Mech. Opt. 2007;7:211–218.
Zheng K., Cao D., Hu H., Ji Y., Li S. Mechanical Properties of Thin-Ply Composites Based on Acoustic Emission Technology. Materials. 2021;14:913. doi: 10.3390/ma14040913. PubMed DOI PMC
Jinachandran S., Rajan G. Fibre Bragg Grating Based Acoustic Emission Measurement System for Structural Health Monitoring Applications. Materials. 2021;14:897. doi: 10.3390/ma14040897. PubMed DOI PMC
Rastegaev I., Danyuk A., Afanas’yev M., Merson D., Berto F., Vinogradov A. Acoustic Emission Assessment of Impending Fracture in a Cyclically Loading Structural Steel. Metals. 2016;6:266. doi: 10.3390/met6110266. DOI
Middleton C.A., McCrory J.P., Greene R.J., Holford K., Patterson E.A. Detecting and Monitoring Cracks in Aerospace Materials Using Post-Processing of TSA and AE Data. Metals. 2019;9:748. doi: 10.3390/met9070748. DOI
Marasanov V., Sharko A. Energy spectrum of acoustic emission signals of nanoscale objects. J. Nano Electron. Phys. 2017;9:02012-1.
Marasanov V.V., Sharko A.A. The energy spectrum of acoustic emission signals in complex environments. J. Nano Electron. Phys. 2017;2:04024.
Marasanov V., Sharko A. Determination of Force Constants of Acoustic Emission Signals in the Equations of Motion of a Model of a Complex Structure of a Continuous Medium. J. Nano Electron. Phys. 2018;10:01019. doi: 10.21272/jnep.10(1).01019. DOI
Li H., Li H. Mechanical properties and acoustic emission characteristics of thick hard roof sandstone in Shendong coal field. Int. J. Coal Sci. Technol. 2017;4:147–158. doi: 10.1007/s40789-017-0163-4. DOI
Mossakovsky V., Makarenkov A., Nikitin P. The Strength of Rocket Structures. Higher School Publishing House; Moscow, Russia: 1990. p. 359.
Aleksenko V., Sharko A., Smetankin S., Stepanchikov D., Yurenin K. Detection of Acoustic-Emission Effects During Reloading of St3sp Steel Specimens. Tech. Diagn. Non Destr. Test. 2017;4:25–31. doi: 10.15407/tdnk2017.04.04. DOI
Aleksenko V., Sharko A., Sharko A., Stepanchikov D., Yurenin K. Identification by AE Method of Structural Features of Deformation Mechanisms at Bending. Tech. Diagn. Non Destr. Test. 2019;1:32–39. doi: 10.15407/tdnk2019.01.04. DOI
Marasanov V., Stepanchikov D., Sharko A., Sharko O. Technology for Determining the Residual Life of Metal Structures Under Conditions of Combined Loading According to Acoustic Emission Measurements. In: Babichev S., Peleshko D., editors. Data Stream Mining and Processing. Communications in Computer and Information Science 1158, Third International Conference, DSMP 2020. Volume 1158. Springer; Cham, Switzerland: 2020. pp. 202–217.