aYAP modRNA reduces cardiac inflammation and hypertrophy in a murine ischemia-reperfusion model
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 HL146134
NHLBI NIH HHS - United States
R01 HL093242
NHLBI NIH HHS - United States
R01 HL116461
NHLBI NIH HHS - United States
R56 HL138454
NHLBI NIH HHS - United States
R01 HL141853
NHLBI NIH HHS - United States
R01 HL137229
NHLBI NIH HHS - United States
R01 HL149401
NHLBI NIH HHS - United States
PubMed
31843959
PubMed Central
PMC6918510
DOI
10.26508/lsa.201900424
PII: 3/1/e201900424
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny signální transdukční aplikace a dávkování genetika MeSH
- apoptóza účinky léků MeSH
- editace RNA MeSH
- infiltrace neutrofily účinky léků MeSH
- injekce intramuskulární MeSH
- kardiomegalie farmakoterapie etiologie MeSH
- kardiomyocyty metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- messenger RNA aplikace a dávkování genetika MeSH
- modely nemocí na zvířatech MeSH
- myokard imunologie MeSH
- myokarditida farmakoterapie etiologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- novorozená zvířata MeSH
- reperfuzní poškození myokardu komplikace MeSH
- signální proteiny YAP MeSH
- transkripční faktory aplikace a dávkování genetika MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- messenger RNA MeSH
- signální proteiny YAP MeSH
- transkripční faktory MeSH
- YAP1 protein, human MeSH Prohlížeč
Myocardial recovery from ischemia-reperfusion (IR) is shaped by the interaction of many signaling pathways and tissue repair processes, including the innate immune response. We and others previously showed that sustained expression of the transcriptional co-activator yes-associated protein (YAP) improves survival and myocardial outcome after myocardial infarction. Here, we asked whether transient YAP expression would improve myocardial outcome after IR injury. After IR, we transiently activated YAP in the myocardium with modified mRNA encoding a constitutively active form of YAP (aYAP modRNA). Histological studies 2 d after IR showed that aYAP modRNA reduced cardiomyocyte (CM) necrosis and neutrophil infiltration. 4 wk after IR, aYAP modRNA-treated mice had better heart function as well as reduced scar size and hypertrophic remodeling. In cultured neonatal and adult CMs, YAP attenuated H2O2- or LPS-induced CM necrosis. TLR signaling pathway components important for innate immune responses were suppressed by YAP/TEAD1. In summary, our findings demonstrate that aYAP modRNA treatment reduces CM necrosis, cardiac inflammation, and hypertrophic remodeling after IR stress.
Boston Children's Hospital and Dana Farber Cancer Institute Boston MA USA
Boston Children's Hospital Boston MA USA
Harvard Stem Cell Institute Cambridge MA USA
Zobrazit více v PubMed
Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, Winsor GL, Hancock RE, Brinkman FS, Lynn DJ (2013) InnateDB: Systems biology of innate immunity and beyond--recent updates and continuing curation. Nucleic Acids Res 41: D1228–D1233. 10.1093/nar/gks1147 PubMed DOI PMC
Carlsson L, Clarke JC, Yen C, Gregoire F, Albery T, Billger M, Egnell AC, Gan LM, Jennbacken K, Johansson E, et al. (2018) Biocompatible, purified VEGF-A mRNA improves cardiac function after intracardiac injection 1 week post-myocardial infarction in swine. Mol Ther Methods Clin Dev 9: 330–346. 10.1016/j.omtm.2018.04.003 PubMed DOI PMC
Chia S, Nagurney JT, Brown DF, Raffel OC, Bamberg F, Senatore F, Wackers FJ, Jang IK (2009) Association of leukocyte and neutrophil counts with infarct size, left ventricular function and outcomes after percutaneous coronary intervention for ST-elevation myocardial infarction. Am J Cardiol 103: 333–337. 10.1016/j.amjcard.2008.09.085 PubMed DOI
Chiong M, Wang ZV, Pedrozo Z, Cao DJ, Troncoso R, Ibacache M, Criollo A, Nemchenko A, Hill JA, Lavandero S (2011) Cardiomyocyte death: Mechanisms and translational implications. Cell Death Dis 2: e244 10.1038/cddis.2011.130 PubMed DOI PMC
Chong AJ, Shimamoto A, Hampton CR, Takayama H, Spring DJ, Rothnie CL, Yada M, Pohlman TH, Verrier ED (2004) Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart. J Thorac Cardiovasc Surg 128: 170–179. 10.1016/j.jtcvs.2003.11.036 PubMed DOI
Conti F, Boucherit N, Baldassarre V, Trouplin V, Toman R, Mottola G, Mege JL, Ghigo E (2014) Coxiella burnetii lipopolysaccharide blocks p38α-MAPK activation through the disruption of TLR-2 and TLR-4 association. Front Cell Infect Microbiol 4: 182 10.3389/fcimb.2014.00182 PubMed DOI PMC
Couper KN, Blount DG, Riley EM (2008) IL-10: The master regulator of immunity to infection. J Immunol 180: 5771–5777. 10.4049/jimmunol.180.9.5771 PubMed DOI
Daubert MA, Jeremias A (2010) The utility of troponin measurement to detect myocardial infarction: Review of the current findings. Vasc Health Risk Manag 6: 691–699. 10.2147/vhrm.s5306 PubMed DOI PMC
Del Re DP, Yang Y, Nakano N, Cho J, Zhai P, Yamamoto T, Zhang N, Yabuta N, Nojima H, Pan D, et al. (2013) Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury. J Biol Chem 288: 3977–3988. 10.1074/jbc.M112.436311 PubMed DOI PMC
Epelman S, Liu PP, Mann DL (2015) Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol 15: 117–129. 10.1038/nri3800 PubMed DOI PMC
Frangogiannis NG. (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110: 159–173. 10.1161/CIRCRESAHA.111.243162 PubMed DOI PMC
Gan LM, Lagerström-Fermér M, Carlsson LG, Arfvidsson C, Egnell AC, Rudvik A, Kjaer M, Collén A, Thompson JD, Joyal J, et al. (2019) Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes. Nat Commun 10: 871 10.1038/s41467-019-08852-4 PubMed DOI PMC
Giordano FJ. (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115: 500–508. 10.1172/JCI24408 PubMed DOI PMC
González-Montero J, Brito R, Gajardo AI, Rodrigo R (2018) Myocardial reperfusion injury and oxidative stress: Therapeutic opportunities. World J Cardiol 10: 74–86. 10.4330/wjc.v10.i9.74 PubMed DOI PMC
Good DW, George T, Watts BA (2012) Toll-like receptor 2 is required for LPS-induced toll-like receptor 4 signaling and inhibition of ion transport in renal thick ascending limb. J Biol Chem 287: 20208–20220. 10.1074/jbc.M111.336255 PubMed DOI PMC
Hale SL, Vivaldi MT, Kloner RA (1986) Fluorescent microspheres: A new tool for visualization of ischemic myocardium in rats. Am J Physiol 251: H863–H868. 10.1152/ajpheart.1986.251.4.H863 PubMed DOI
Hazeki K, Kinoshita S, Matsumura T, Nigorikawa K, Kubo H, Hazeki O (2006) Opposite effects of wortmannin and 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride on toll-like receptor-mediated nitric oxide production: Negative regulation of nuclear factor-{kappa}B by phosphoinositide 3-kinase. Mol Pharmacol 69: 1717–1724. 10.1124/mol.105.021162 PubMed DOI
He S, Liang Y, Shao F, Wang X (2011) Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci U S A 108: 20054–20059. 10.1073/pnas.1116302108 PubMed DOI PMC
Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, Martin JF (2013) Hippo signaling impedes adult heart regeneration. Development 140: 4683–4690. 10.1242/dev.102798 PubMed DOI PMC
Heufler C, Koch F, Stanzl U, Topar G, Wysocka M, Trinchieri G, Enk A, Steinman RM, Romani N, Schuler G (1996) Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur J Immunol 26: 659–668. 10.1002/eji.1830260323 PubMed DOI
Hickson-Bick DL, Jones C, Buja LM (2006) The response of neonatal rat ventricular myocytes to lipopolysaccharide-induced stress. Shock 25: 546–552. 10.1097/01.shk.0000209549.03463.91 PubMed DOI
Hong L, Li X, Zhou D, Geng J, Chen L (2018) Role of Hippo signaling in regulating immunity. Cell Mol Immunol 15: 1003–1009. 10.1038/s41423-018-0007-1 PubMed DOI PMC
Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: The release of damage-associated molecular patterns and its physiological relevance. Immunity 38: 209–223. 10.1016/j.immuni.2013.02.003 PubMed DOI
Karikó K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by toll-like receptors: The impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23: 165–175. 10.1016/j.immuni.2005.06.008 PubMed DOI
Knowlton AA. (2017) Paying for the tolls: The high cost of the innate immune system for the cardiac myocyte. Adv Exp Med Biol 1003: 17–34. 10.1007/978-3-319-57613-8_2 PubMed DOI
Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, Schilling JD, Ornitz DM, Randolph GJ, Mann DL (2014) Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci U S A 111: 16029–16034. 10.1073/pnas.1406508111 PubMed DOI PMC
Leach JP, Heallen T, Zhang M, Rahmani M, Morikawa Y, Hill MC, Segura A, Willerson JT, Martin JF (2017) Hippo pathway deficiency reverses systolic heart failure after infarction. Nature 550: 260–264. 10.1038/nature24045 PubMed DOI PMC
Lee CC, Avalos AM, Ploegh HL (2012) Accessory molecules for toll-like receptors and their function. Nat Rev Immunol 12: 168–179. 10.1038/nri3151 PubMed DOI PMC
Lin Z, Guo H, Cao Y, Zohrabian S, Zhou P, Ma Q, VanDusen N, Guo Y, Zhang J, Stevens SM, et al. (2016) Acetylation of VGLL4 regulates hippo-YAP signaling and postnatal cardiac growth. Dev Cell 39: 466–479. 10.1016/j.devcel.2016.09.005 PubMed DOI PMC
Lin Z, von Gise A, Zhou P, Gu F, Ma Q, Jiang J, Yau AL, Buck JN, Gouin KA, van Gorp PR, et al. (2014) Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ Res 115: 354–363. 10.1161/CIRCRESAHA.115.303632 PubMed DOI PMC
Lin Z, Zhou P, von Gise A, Gu F, Ma Q, Chen J, Guo H, van Gorp PR, Wang DZ, Pu WT (2015) Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circ Res 116: 35–45. 10.1161/CIRCRESAHA.115.304457 PubMed DOI PMC
Litt MR, Jeremy RW, Weisman HF, Winkelstein JA, Becker LC (1989) Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia. Evidence for neutrophil-mediated reperfusion injury. Circulation 80: 1816–1827. 10.1161/01.cir.80.6.1816 PubMed DOI
Liu B, Zheng Y, Yin F, Yu J, Silverman N, Pan D (2016) Toll receptor-mediated hippo signaling controls innate immunity in Drosophila. Cell 164: 406–419. 10.1016/j.cell.2015.12.029 PubMed DOI PMC
Liu R, Lee J, Kim BS, Wang Q, Buxton SK, Balasubramanyam N, Kim JJ, Dong J, Zhang A, Li S, et al. (2017) Tead1 is required for maintaining adult cardiomyocyte function, and its loss results in lethal dilated cardiomyopathy. JCI Insight 2: 93343 10.1172/jci.insight.93343 PubMed DOI PMC
Liu S, Martin JF (2019) The regulation and function of the Hippo pathway in heart regeneration. Wiley Interdiscip Rev Dev Biol 8: e335 10.1002/wdev.335 PubMed DOI
Lønborg JT. (2015) Targeting reperfusion injury in the era of primary percutaneous coronary intervention: Hope or hype. Heart 101: 1612–1618. 10.1136/heartjnl-2015-307804 PubMed DOI
Matsuguchi T, Musikacharoen T, Ogawa T, Yoshikai Y (2000) Gene expressions of toll-like receptor 2, but not toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages. J Immunol 165: 5767–5772. 10.4049/jimmunol.165.10.5767 PubMed DOI
Mays LE, Ammon-Treiber S, Mothes B, Alkhaled M, Rottenberger J, Müller-Hermelink ES, Grimm M, Mezger M, Beer-Hammer S, von Stebut E, et al. (2013) Modified Foxp3 mRNA protects against asthma through an IL-10-dependent mechanism. J Clin Invest 123: 1216–1228. 10.1172/JCI65351 PubMed DOI PMC
Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204: 3037–3047. 10.1084/jem.20070885 PubMed DOI PMC
Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4: a006049 10.1101/cshperspect.a006049 PubMed DOI PMC
Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28: 886–892. 10.1248/bpb.28.886 PubMed DOI
Orn S, Manhenke C, Anand IS, Squire I, Nagel E, Edvardsen T, Dickstein K (2007) Effect of left ventricular scar size, location, and transmurality on left ventricular remodeling with healed myocardial infarction. Am J Cardiol 99: 1109–1114. 10.1016/j.amjcard.2006.11.059 PubMed DOI
Pan D. (2010) The hippo signaling pathway in development and cancer. Dev Cell 19: 491–505. 10.1016/j.devcel.2010.09.011 PubMed DOI PMC
Prasad A, Stone GW, Holmes DR, Gersh B (2009) Reperfusion injury, microvascular dysfunction, and cardioprotection: The “dark side” of reperfusion. Circulation 120: 2105–2112. 10.1161/CIRCULATIONAHA.108.814640 PubMed DOI
Ramjee V, Li D, Manderfield LJ, Liu F, Engleka KA, Aghajanian H, Rodell CB, Lu W, Ho V, Wang T, et al. (2017) Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J Clin Invest 127: 899–911. 10.1172/JCI88759 PubMed DOI PMC
Reindl M, Reinstadler SJ, Feistritzer HJ, Klug G, Tiller C, Mair J, Mayr A, Jaschke W, Metzler B (2017) Relation of inflammatory markers with myocardial and microvascular injury in patients with reperfused ST-elevation myocardial infarction. Eur Heart J Acute Cardiovasc Care 6: 640–649. 10.1177/2048872616661691 PubMed DOI
Sahin U, Karikó K, Türeci Ö (2014) mRNA-based therapeutics—Developing a new class of drugs. Nat Rev Drug Discov 13: 759–780. 10.1038/nrd4278 PubMed DOI
Scuderi GJ, Butcher J (2017) Naturally engineered maturation of cardiomyocytes. Front Cell Dev Biol 5: 50 10.3389/fcell.2017.00050 PubMed DOI PMC
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550. 10.1073/pnas.0506580102 PubMed DOI PMC
Sugiyama T, Hasegawa K, Kobayashi Y, Takahashi O, Fukui T, Tsugawa Y (2015) Differential time trends of outcomes and costs of care for acute myocardial infarction hospitalizations by ST elevation and type of intervention in the United States, 2001-2011. J Am Heart Assoc 4: e001445 10.1161/JAHA.114.001445 PubMed DOI PMC
Timmers L, Pasterkamp G, de Hoog VC, Arslan F, Appelman Y, de Kleijn DP (2012) The innate immune response in reperfused myocardium. Cardiovasc Res 94: 276–283. 10.1093/cvr/cvs018 PubMed DOI
van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJ (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 170: 818–829. 10.2353/ajpath.2007.060547 PubMed DOI PMC
von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD, et al. (2012) YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A 109: 2394–2399. 10.1073/pnas.1116136109 PubMed DOI PMC
Wang S, Xie F, Chu F, Zhang Z, Yang B, Dai T, Gao L, Wang L, Ling L, Jia J, et al. (2017) YAP antagonizes innate antiviral immunity and is targeted for lysosomal degradation through IKKɛ-mediated phosphorylation. Nat Immunol 18: 733–743. 10.1038/ni.3744 PubMed DOI
Xiao Y, Leach J, Wang J, Martin JF (2016) Hippo/yap signaling in cardiac development and regeneration. Curr Treat Options Cardiovasc Med 18: 38 10.1007/s11936-016-0461-y PubMed DOI
Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J, Porrello ER, Mahmoud AI, Tan W, Shelton JM, et al. (2013) Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci U S A 110: 13839–13844. 10.1073/pnas.1313192110 PubMed DOI PMC
Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao J, Yuan H, Tumaneng K, Li H, et al. (2012) Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150: 780–791. 10.1016/j.cell.2012.06.037 PubMed DOI PMC
Zangi L, Lui KO, von Gise A, Ma Q, Ebina W, Ptaszek LM, Später D, Xu H, Tabebordbar M, Gorbatov R, et al. (2013) Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol 31: 898–907. 10.1038/nbt.2682 PubMed DOI PMC
Zhang C, Lin G, Wan W, Li X, Zeng B, Yang B, Huang C (2012) Resveratrol, a polyphenol phytoalexin, protects cardiomyocytes against anoxia/reoxygenation injury via the TLR4/NF-κB signaling pathway. Int J Mol Med 29: 557–563. 10.3892/ijmm.2012.885 PubMed DOI PMC
Zhou X, Li W, Wang S, Zhang P, Wang Q, Xiao J, Zhang C, Zheng X, Xu X, Xue S, et al. (2019) YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis. Cell Rep 27: 1176–1189.e5. 10.1016/j.celrep.2019.03.028 PubMed DOI
Zlatanova I, Pinto C, Silvestre JS (2016) Immune modulation of cardiac repair and regeneration: The art of mending broken hearts. Front Cardiovasc Med 3: 40 10.3389/fcvm.2016.00040 PubMed DOI PMC