Assessing average somatic CAG repeat instability at the protein level
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31844074
PubMed Central
PMC6915696
DOI
10.1038/s41598-019-55202-x
PII: 10.1038/s41598-019-55202-x
Knihovny.cz E-resources
- MeSH
- DNA genetics MeSH
- Exons genetics MeSH
- Trinucleotide Repeat Expansion genetics MeSH
- Humans MeSH
- Mice, Inbred C57BL MeSH
- Mice, Transgenic MeSH
- Peptides genetics MeSH
- Huntingtin Protein chemistry genetics MeSH
- Antibodies metabolism MeSH
- Amino Acid Sequence MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
- Peptides MeSH
- polyglutamine MeSH Browser
- Huntingtin Protein MeSH
- Antibodies MeSH
Sandwich ELISA-based methods use Abs that target the expanded polyglutamine (polyQ) tract to quantify mutant huntingtin (mHTT). Using Meso Scale Discovery (MSD) assay, the mHTT signal detected with MW1 Ab correlated with polyQ length and doubled with a difference of only 7 glutamine residues between equivalent amounts of purified mHTTexon1 proteins. Similar polyQ length-dependent effects on MSD signals were confirmed using endogenous full length mHTT from brains of Huntington's disease (HD) knock-in (KI) mice. We used this avidity bias to devise a method to assess average CAG repeat instability at the protein level in a mixed population of HTT proteins present in tissues. Signal detected for average polyQ length quantification at the protein level by our method exhibited a strong correlation with average CAG repeat length at the genomic DNA level determined by PCR method in striatal tissue homogenates from HdhQ140 KI mice and in human HD postmortem cortex. This work establishes that CAG repeat instability in mutant HTT is reflected at the protein level.
See more in PubMed
MacDonald ME, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72:971–983. doi: 10.1016/0092-8674(93)90585-E. PubMed DOI
Nance MA, Mathias-Hagen V, Breningstall G, Wick MJ, McGlennen RC. Analysis of a very large trinucleotide repeat in a patient with juvenile Huntington’s disease. Neurology. 1999;52:392–394. doi: 10.1212/WNL.52.2.392. PubMed DOI
Lee J-M, et al. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology. 2012;78:690–695. doi: 10.1212/WNL.0b013e318249f683. PubMed DOI PMC
Djoussé L, et al. Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease. Am. J. Med. Genet. A. 2003;119A:279–282. doi: 10.1002/ajmg.a.20190. PubMed DOI
Wexler NS, et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc. Natl. Acad. Sci. USA. 2004;101:3498–3503. doi: 10.1073/pnas.0308679101. PubMed DOI PMC
Caron, N. S., Wright, G. E. & Hayden, M. R. Huntington Disease. In GeneReviews® (eds Adam, M. P. et al.) (University of Washington, Seattle, 1993).
Telenius H, et al. Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nat. Genet. 1994;6:409–414. doi: 10.1038/ng0494-409. PubMed DOI
De Rooij KE, De Koning Gans PA, Roos RA, Van Ommen GJ, Den Dunnen JT. Somatic expansion of the (CAG)n repeat in Huntington disease brains. Hum. Genet. 1995;95:270–274. doi: 10.1007/BF00225192. PubMed DOI
Lee J-M, Pinto RM, Gillis T, St Claire JC, Wheeler VC. Quantification of age-dependent somatic CAG repeat instability in Hdh CAG knock-in mice reveals different expansion dynamics in striatum and liver. PloS One. 2011;6:e23647. doi: 10.1371/journal.pone.0023647. PubMed DOI PMC
Kennedy L, Shelbourne PF. Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in Huntington’s disease? Hum. Mol. Genet. 2000;9:2539–2544. doi: 10.1093/hmg/9.17.2539. PubMed DOI
Kennedy L, et al. Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis. Hum. Mol. Genet. 2003;12:3359–3367. doi: 10.1093/hmg/ddg352. PubMed DOI
Swami M, et al. Somatic expansion of the Huntington’s disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum. Mol. Genet. 2009;18:3039–3047. doi: 10.1093/hmg/ddp242. PubMed DOI PMC
Dragileva E, et al. Intergenerational and striatal CAG repeat instability in Huntington’s disease knock-in mice involve different DNA repair genes. Neurobiol. Dis. 2009;33:37–47. doi: 10.1016/j.nbd.2008.09.014. PubMed DOI PMC
Pinto RM, et al. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington’s disease mice: genome-wide and candidate approaches. PLoS Genet. 2013;9:e1003930. doi: 10.1371/journal.pgen.1003930. PubMed DOI PMC
Hensman Moss DJ, et al. Identification of genetic variants associated with Huntington’s disease progression: a genome-wide association study. Lancet Neurol. 2017;16:701–711. doi: 10.1016/S1474-4422(17)30161-8. PubMed DOI
Consortium, G. M. of H. D. (GeM-H. et al. Huntington’s disease onset is determined by length of uninterrupted CAG, not encoded polyglutamine, and is modified by DNA maintenance mechanisms. bioRxiv 529768 10.1101/529768. (2019)
Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium. Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease. Cell. 2015;162:516–526. doi: 10.1016/j.cell.2015.07.003. PubMed DOI PMC
Lee J-M, et al. A modifier of Huntington’s disease onset at the MLH1 locus. Hum. Mol. Genet. 2017;26:3859–3867. doi: 10.1093/hmg/ddx286. PubMed DOI PMC
Southwell AL, et al. Ultrasensitive measurement of huntingtin protein in cerebrospinal fluid demonstrates increase with Huntington disease stage and decrease following brain huntingtin suppression. Sci. Rep. 2015;5:12166. doi: 10.1038/srep12166. PubMed DOI PMC
Wild EJ, et al. Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J. Clin. Invest. 2015;125:1979–1986. doi: 10.1172/JCI80743. PubMed DOI PMC
Tabrizi SJ, et al. Targeting Huntingtin Expression in Patients with Huntington’s Disease. N. Engl. J. Med. 2019 doi: 10.1056/NEJMoa1900907. PubMed DOI
Macdonald D, et al. Quantification assays for total and polyglutamine-expanded huntingtin proteins. PloS One. 2014;9:e96854. doi: 10.1371/journal.pone.0096854. PubMed DOI PMC
Ko J, Ou S, Patterson PH. New anti-huntingtin monoclonal antibodies: implications for huntingtin conformation and its binding proteins. Brain Res. Bull. 2001;56:319–329. doi: 10.1016/S0361-9230(01)00599-8. PubMed DOI
Trottier Y, et al. Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature. 1995;378:403–406. doi: 10.1038/378403a0. PubMed DOI
Miller J, et al. Identifying polyglutamine protein species in situ that best predict neurodegeneration. Nat. Chem. Biol. 2011;7:925–934. doi: 10.1038/nchembio.694. PubMed DOI PMC
Bennett MJ, et al. A linear lattice model for polyglutamine in CAG-expansion diseases. Proc. Natl. Acad. Sci. USA. 2002;99:11634–11639. doi: 10.1073/pnas.182393899. PubMed DOI PMC
Li P, et al. The structure of a polyQ-anti-polyQ complex reveals binding according to a linear lattice model. Nat. Struct. Mol. Biol. 2007;14:381–387. doi: 10.1038/nsmb1234. PubMed DOI
Klein FAC, et al. Pathogenic and non-pathogenic polyglutamine tracts have similar structural properties: towards a length-dependent toxicity gradient. J. Mol. Biol. 2007;371:235–244. doi: 10.1016/j.jmb.2007.05.028. PubMed DOI
Klein FAC, et al. Linear and extended: a common polyglutamine conformation recognized by the three antibodies MW1, 1C2 and 3B5H10. Hum. Mol. Genet. 2013;22:4215–4223. doi: 10.1093/hmg/ddt273. PubMed DOI
Owens GE, New DM, West AP, Bjorkman PJ. Anti-PolyQ Antibodies Recognize a Short PolyQ Stretch in Both Normal and Mutant Huntingtin Exon 1. J. Mol. Biol. 2015;427:2507–2519. doi: 10.1016/j.jmb.2015.05.023. PubMed DOI PMC
Fodale V, et al. Validation of Ultrasensitive Mutant Huntingtin Detection in Human Cerebrospinal Fluid by Single Molecule Counting Immunoassay. J. Huntingt. Dis. 2017;6:349–361. doi: 10.3233/JHD-170269. PubMed DOI PMC
Langbehn DR, et al. A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin. Genet. 2004;65:267–277. doi: 10.1111/j.1399-0004.2004.00241.x. PubMed DOI
Weiss A, et al. Mutant huntingtin fragmentation in immune cells tracks Huntington’s disease progression. J. Clin. Invest. 2012;122:3731–3736. doi: 10.1172/JCI64565. PubMed DOI PMC
Hensman Moss DJ, et al. Quantification of huntingtin protein species in Huntington’s disease patient leukocytes using optimised electrochemiluminescence immunoassays. PloS One. 2017;12:e0189891. doi: 10.1371/journal.pone.0189891. PubMed DOI PMC
Byrne Lauren M., Rodrigues Filipe B., Johnson Eileanor B., Wijeratne Peter A., De Vita Enrico, Alexander Daniel C., Palermo Giuseppe, Czech Christian, Schobel Scott, Scahill Rachael I., Heslegrave Amanda, Zetterberg Henrik, Wild Edward J. Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington’s disease. Science Translational Medicine. 2018;10(458):eaat7108. doi: 10.1126/scitranslmed.aat7108. PubMed DOI
Dehay B, Weber C, Trottier Y, Bertolotti A. Mapping of the epitope of monoclonal antibody 2B4 to the proline-rich region of human Huntingtin, a region critical for aggregation and toxicity. Biotechnol. J. 2007;2:559–564. doi: 10.1002/biot.200600249. PubMed DOI
Aronin N, et al. CAG expansion affects the expression of mutant Huntingtin in the Huntington’s disease brain. Neuron. 1995;15:1193–1201. doi: 10.1016/0896-6273(95)90106-X. PubMed DOI
Evers MM, et al. Making (anti-) sense out of huntingtin levels in Huntington disease. Mol. Neurodegener. 2015;10:21. doi: 10.1186/s13024-015-0018-7. PubMed DOI PMC
Wheeler VC, et al. Mismatch repair gene Msh2 modifies the timing of early disease in Hdh(Q111) striatum. Hum. Mol. Genet. 2003;12:273–281. doi: 10.1093/hmg/ddg056. PubMed DOI
Neto JL, et al. Genetic Contributors to Intergenerational CAG Repeat Instability in Huntington’s Disease Knock-In Mice. Genetics. 2017;205:503–516. doi: 10.1534/genetics.116.195578. PubMed DOI PMC
Lee J-M, et al. A novel approach to investigate tissue-specific trinucleotide repeat instability. BMC Syst. Biol. 2010;4:29. doi: 10.1186/1752-0509-4-29. PubMed DOI PMC
Neueder A, et al. The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington’s disease patients. Sci. Rep. 2017;7:1307. doi: 10.1038/s41598-017-01510-z. PubMed DOI PMC
Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol. 2017;16:837–847. doi: 10.1016/S1474-4422(17)30280-6. PubMed DOI PMC
Tabrizi SJ, Ghosh R, Leavitt BR. Huntingtin Lowering Strategies for Disease Modification in Huntington’s Disease. Neuron. 2019;101:801–819. doi: 10.1016/j.neuron.2019.01.039. PubMed DOI
Schilling G, et al. Expression of the Huntington’s disease (IT15) protein product in HD patients. Hum. Mol. Genet. 1995;4:1365–1371. doi: 10.1093/hmg/4.8.1365. PubMed DOI
Baldo Barbara, Sajjad Muhammad Umar, Cheong Rachel Y., Bigarreau Julie, Vijayvargia Ravi, McLean Catriona, Perrier Anselme L., Seong Ihn Sik, Halliday Glenda, Petersén Åsa, Kirik Deniz. Quantification of Total and Mutant Huntingtin Protein Levels in Biospecimens Using a Novel alphaLISA Assay. eneuro. 2018;5(4):ENEURO.0234-18.2018. doi: 10.1523/ENEURO.0234-18.2018. PubMed DOI PMC
Mutter GL, Boynton KA. PCR bias in amplification of androgen receptor alleles, a trinucleotide repeat marker used in clonality studies. Nucleic Acids Res. 1995;23:1411–1418. doi: 10.1093/nar/23.8.1411. PubMed DOI PMC
Warner JP, et al. A general method for the detection of large CAG repeat expansions by fluorescent PCR. J. Med. Genet. 1996;33:1022–1026. doi: 10.1136/jmg.33.12.1022. PubMed DOI PMC
Gutekunst CA, et al. Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proc. Natl. Acad. Sci. USA. 1995;92:8710–8714. doi: 10.1073/pnas.92.19.8710. PubMed DOI PMC
Shin A, et al. Novel allele-specific quantification methods reveal no effects of adult onset CAG repeats on HTT mRNA and protein levels. Hum. Mol. Genet. 2017;26:1258–1267. doi: 10.1093/hmg/ddx033. PubMed DOI PMC
DiFiglia M, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997;277:1990–1993. doi: 10.1126/science.277.5334.1990. PubMed DOI
Mende-Mueller LM, Toneff T, Hwang SR, Chesselet MF, Hook VY. Tissue-specific proteolysis of Huntingtin (htt) in human brain: evidence of enhanced levels of N- and C-terminal htt fragments in Huntington’s disease striatum. J. Neurosci. Off. J. Soc. Neurosci. 2001;21:1830–1837. doi: 10.1523/JNEUROSCI.21-06-01830.2001. PubMed DOI PMC
Kim YJ, et al. Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington’s disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc. Natl. Acad. Sci. USA. 2001;98:12784–12789. doi: 10.1073/pnas.221451398. PubMed DOI PMC
Caron NS, Desmond CR, Xia J, Truant R. Polyglutamine domain flexibility mediates the proximity between flanking sequences in huntingtin. Proc. Natl. Acad. Sci. USA. 2013;110:14610–14615. doi: 10.1073/pnas.1301342110. PubMed DOI PMC
Daldin M, et al. Polyglutamine expansion affects huntingtin conformation in multiple Huntington’s disease models. Sci. Rep. 2017;7:1–15. doi: 10.1038/s41598-017-05336-7. PubMed DOI PMC
Cinesi C, Aeschbach L, Yang B, Dion V. Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase. Nat. Commun. 2016;7:13272. doi: 10.1038/ncomms13272. PubMed DOI PMC
Suelves N, Kirkham-McCarthy L, Lahue RS, Ginés S. A selective inhibitor of histone deacetylase 3 prevents cognitive deficits and suppresses striatal CAG repeat expansions in Huntington’s disease mice. Sci. Rep. 2017;7:6082. doi: 10.1038/s41598-017-05125-2. PubMed DOI PMC
Busch A, et al. Mutant huntingtin promotes the fibrillogenesis of wild-type huntingtin: a potential mechanism for loss of huntingtin function in Huntington’s disease. J. Biol. Chem. 2003;278:41452–41461. doi: 10.1074/jbc.M303354200. PubMed DOI
Kim M, et al. Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition. J. Neurosci. Off. J. Soc. Neurosci. 1999;19:964–973. doi: 10.1523/JNEUROSCI.19-03-00964.1999. PubMed DOI PMC
Cui X, et al. TR-FRET assays of Huntingtin protein fragments reveal temperature and polyQ length-dependent conformational changes. Sci. Rep. 2014;4:5601. doi: 10.1038/srep05601. PubMed DOI PMC
Gasteiger Elisabeth, Hoogland Christine, Gattiker Alexandre, Duvaud S'everine, Wilkins Marc R., Appel Ron D., Bairoch Amos. The Proteomics Protocols Handbook. Totowa, NJ: Humana Press; 2005. Protein Identification and Analysis Tools on the ExPASy Server; pp. 571–607.
White JK, et al. Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat. Genet. 1997;17:404–410. doi: 10.1038/ng1297-404. PubMed DOI
Shelbourne PF, et al. A Huntington’s disease CAG expansion at the murine Hdh locus is unstable and associated with behavioural abnormalities in mice. Hum. Mol. Genet. 1999;8:763–774. doi: 10.1093/hmg/8.5.763. PubMed DOI
Wheeler VC, et al. Length-dependent gametic CAG repeat instability in the Huntington’s disease knock-in mouse. Hum. Mol. Genet. 1999;8:115–122. doi: 10.1093/hmg/8.1.115. PubMed DOI
Menalled LB, Sison JD, Dragatsis I, Zeitlin S, Chesselet M-F. Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG repeats. J. Comp. Neurol. 2003;465:11–26. doi: 10.1002/cne.10776. PubMed DOI
Menalled LB, et al. Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington’s disease: zQ175. PloS One. 2012;7:e49838. doi: 10.1371/journal.pone.0049838. PubMed DOI PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC