Amorphous Ge-Bi-Se Thin Films: A Mass Spectrometric Study

. 2019 Dec 16 ; 9 (1) : 19168. [epub] 20191216

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31844112
Odkazy

PubMed 31844112
PubMed Central PMC6915747
DOI 10.1038/s41598-019-55773-9
PII: 10.1038/s41598-019-55773-9
Knihovny.cz E-zdroje

The Ge-Bi-Se thin films of varied compositions (Ge content 0-32.1 at. %, Bi content 0-45.7 at. %, Se content 54.3-67.9 at. %) have been prepared by rf magnetron (co)-sputtering technique. The present study was undertaken in order to investigate the clusters generated during the interaction of laser pulses with Ge-Bi-Se thin films using laser ablation time-of-flight mass spectrometry. The stoichiometry of the clusters was determined in order to understand the individual species present in the plasma plume. Laser ablation of Ge-Bi-Se thin films accompanied by ionization produces about 20 positively and/or negatively charged unary, binary and ternary (Gex+, Biy+, Sez+/-, GexSez+/-, BiySez+/- and GexBiySez-) clusters. Furthermore, we performed the laser ablation experiments of Ge:Bi:Se elemental mixtures and the results were compared with laser ablation time-of-flight mass spectrometry analysis of thin films. Moreover, to understand the geometry of the generated clusters, we calculated structures of some selected binary and ternary clusters using density functional theory. The generated clusters and their calculated possible geometries can give important structural information, as well as help to understand the processes present in the plasma processes exploited for thin films deposition.

Zobrazit více v PubMed

Adam, J.-L. & Zhang, X. Chalcogenide glasses: Preparation, properties and applications. (Woodhead publishing limited (UK), 2014).

Eggleton BJ, Luther-Davies B, Richardson K. Chalcogenide photonics. Nat. Photonics. 2011;5:141–148. doi: 10.1038/nphoton.2011.309. DOI

Soonmin H, Joseph Sahaya Anand TA. Review of chalcogenide thin films for solar cell applications. Indian J. Sci. Technol. 2015;8:67499. doi: 10.17485/ijst/2015/v8i12/67499. DOI

Wuttig M, Bhaskaran H, Taubner T. Phase-change materials for non-volatile photonic applications. Nat. Photonics. 2017;11:465–476. doi: 10.1038/nphoton.2017.126. DOI

Raoux S, Wełnic W, Lelmini D. Phase change materials and their application to nonvolatile memories. Chem. Rev. 2010;110:240–267. doi: 10.1021/cr900040x. PubMed DOI

Shiryaev VS, et al. Preparation of core-clad arsenic rich As-Se glass fiber. J. Non. Cryst. Solids. 2016;448:11–15. doi: 10.1016/j.jnoncrysol.2016.06.033. DOI

Zakery A, Elliott SR. Optical properties and applications of chalcogenide glasses: a review. J. Non. Cryst. Solids. 2003;330:1–12. doi: 10.1016/j.jnoncrysol.2003.08.064. DOI

Němec P, et al. Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near- and middle-infrared spectral regions. Mater. Res. Bull. 2014;51:176–179. doi: 10.1016/j.materresbull.2013.11.050. DOI

Sourková P, et al. Spectroscopy of infrared transitions of Pr3+ ions in Ga-Ge-Sb-Se glasses. J. Lumin. 2009;129:1148–1153. doi: 10.1016/j.jlumin.2009.05.009. DOI

Afify N. Structural relaxation of GeSe2 chalcogenide glass studied with use of the radial distribution function. Phys. Rev. B. 1993;48:16304–16309. doi: 10.1103/PhysRevB.48.16304. PubMed DOI

Popescu, M. Non-crystalline chalcogenides. (Kluwer Academic Publishers, 2000).

Borisova, Z. U. Glassy Semiconductors. (Springer US, 1981).

Tohge N, Minami T, Tanaka M. Photoconductivity of vitreous chalcogenides chemically modified by bismuth. J. Non. Cryst. Solids. 1983;59–60:999–1002. doi: 10.1016/0022-3093(83)90335-6. DOI

Tohge N, Yamamoto Y, Minami T, Tanaka M. Preparation of n-type semiconducting Ge20Bi10Se70 glass. Appl. Phys. Lett. 1979;34:640–641. doi: 10.1063/1.90621. DOI

Frumar M, Tichý L. N-type conductivity in chalcogenide glasses and layers. J. Non. Cryst. Solids. 1987;97–98:1139–1146. doi: 10.1016/0022-3093(87)90273-0. DOI

Nagels P, Rotti M, Vikhrov S. Doping of chalcogenide glasses in the Ge-Se and Ge-Te systems. J. Phys. Colloq. 1981;C4:907.

Abdel-Rahim FM, Hafiz MM, Alsorory H. Structure and electrical properties of Bi5GexSe95-x thin films. Curr. Appl. Phys. 2012;12:389–393. doi: 10.1016/j.cap.2011.07.035. DOI

Aparimita A, et al. Effect of Bi addition on the optical properties of Ge30Se70-xBix thin films. J. Alloys Compd. 2018;739:997–1004. doi: 10.1016/j.jallcom.2017.12.303. DOI

Liu Y, et al. A study on crystallization kinetics of thermoelectric Bi2Se3 crystals in Ge-Se-Bi chalcogenide glasses by differential scanning calorimeter. J. Am. Ceram. Soc. 2013;96:2141–2146. doi: 10.1111/jace.12421. DOI

Mytilineou E, Chao BS, Papadimitriou D. Raman scattering in sputtered amorphous Ge25Se75-xBix films. J. Non. Cryst. Solids. 1996;195:279–285. doi: 10.1016/0022-3093(95)00571-4. DOI

Kounavis P, Mytilineou E. The defect states in sputtered Ge-Se-Bi films. J. Non. Cryst. Solids. 1996;201:119–127. doi: 10.1016/0022-3093(96)00140-8. DOI

Springer Handbook of Glass. (eds. Musgraves, J. D., Hu, J. & Calvez, L.) (Springer International Publishing, 2019).

Halenkovič T, et al. Amorphous Ge-Sb-Se thin films fabricated by co-sputtering: Properties and photosensitivity. J. Am. Ceram. Soc. 2018;101:2877–2887. doi: 10.1111/jace.15453. DOI

Mawale R, et al. Mass spectrometric investigation of amorphous Ga-Sb-Se thin films. Sci. Rep. 2019;9:10213. doi: 10.1038/s41598-019-46767-8. PubMed DOI PMC

Šútorová K, et al. Laser desorption ionisation time-of-flight mass spectrometry of chalcogenide glasses from (GeSe2)100-x(Sb2Se3)x system. J. Am. Ceram. Soc. 2015;98:4107–4110. doi: 10.1111/jace.13857. DOI

Mawale, R. M. et al. Laser desorption ionization of As2Ch3 (Ch = S, Se, and Te) chalcogenides using quadrupole ion trap time-of-flight mass spectrometry: A comparative study. J. Am. Soc. Mass Spectrom.28, 2569–2579 (2017). PubMed

Mawale R, et al. Laser desorption ionization time-of-flight mass spectrometry of GexSe1-x chalcogenide glasses, their thin films, and Ge:Se mixtures. J. Non. Cryst. Solids. 2019;509:65–73. doi: 10.1016/j.jnoncrysol.2018.12.020. DOI

Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF, Nandi S, Ellison GB. Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations. Chem. Rev. 2002;102:231–282. doi: 10.1021/cr990044u. PubMed DOI

Kramida, A., Ralchenko, Y., Reader, J. & Team, N. A. NIST Atomic Spectra Database (version 5.6.1). Natl. Inst. Stand. Technol. Gaithersburg, MD., 10.18434/T4W30F (2018).

Pangavhane SD, et al. Laser desorption ionization time-of-flight mass spectrometry of erbium-doped Ga-Ge-Sb-S glasses. Rapid Commun. Mass Spectrom. 2014;28:1221–1232. doi: 10.1002/rcm.6896. PubMed DOI

Sharma, T., Sharma, R., Tamboli, R. A. & Kanhere, D. G. Ab initio investigation of structural and electronic properties of selenium and tellurium clusters. Eur. Phys. J. B92 (2019).

Archibong EF, St-Amant A. A study of Gen- and Gen (n=2-6) using B3LYP-DFT and CCSD(T) methods: The structures and electron affinities of small germanium clusters. J. Chem. Phys. 1998;109:962–972. doi: 10.1063/1.476639. DOI

Jia JM, Chen GB, Shi DN, Wang BL. Structural and electronic properties of Bin (n = 2-14) clusters from density-functional calculations. Eur. Phys. J. D. 2008;47:359–365. doi: 10.1140/epjd/e2008-00029-y. DOI

Yuan HK, Chen H, Kuang AL, Miao Y, Xiong ZH. Density-functional study of small neutral and cationic bismuth clusters Bin and Bin+ (n = 2-24) J. Chem. Phys. 2008;128:094305. doi: 10.1063/1.2837460. PubMed DOI

Xu W, Bai W. The selenium clusters Sen (n = 1–5) and their anions: Structures and electron affinities. J. Mol. Struct. THEOCHEM. 2008;854:89–105. doi: 10.1016/j.theochem.2007.12.040. DOI

Mandal, G., Mawale, R. & Havel, J. Laser Ablation Generation of Bismuth Selenide Clusters from Mixtures of Elements, Crystalline Bi2Se3or Thin Films: Laser Desorption Ionization (LDI) and Surface Assisted LDI (SALDI) Time-of-Flight Mass Spectrometry using Graphene and Nano- diamonds. (In Press) (2019). PubMed

van Lenthe E, Baerends EJ. Optimized Slater-type basis sets for the elements 1-118. J. Comput. Chem. 2003;24:1142–1156. doi: 10.1002/jcc.10255. PubMed DOI

Swart M, Ehlers AW, Lammertsma K. Performance of the OPBE exchange-correlation functional. Mol. Phys. 2004;102:2467–2474. doi: 10.1080/0026897042000275017. DOI

Frisch, M. J. et al. Gaussian 16, Revision C.01. Gaussian, Inc., (Wallingford CT, 2016).

Hanwell MD, et al. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...