Mass spectrometric investigation of amorphous Ga-Sb-Se thin films
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
31308483
PubMed Central
PMC6629872
DOI
10.1038/s41598-019-46767-8
PII: 10.1038/s41598-019-46767-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Amorphous chalcogenide thin films are widely studied due to their enhanced properties and extensive applications. Here, we have studied amorphous Ga-Sb-Se chalcogenide thin films prepared by magnetron co-sputtering, via laser ablation quadrupole ion trap time-of-flight mass spectrometry. Furthermore, the stoichiometry of the generated clusters was determined which gives information about individual species present in the plasma plume originating from the interaction of amorphous chalcogenides with high energy laser pulses. Seven different compositions of thin films (Ga content 7.6-31.7 at. %, Sb content 5.2-31.2 at. %, Se content 61.2-63.3 at. %) were studied and in each case about ~50 different clusters were identified in positive and ~20-30 clusters in negative ion mode. Assuming that polymers can influence the laser desorption (laser ablation) process, we have used parafilm as a material to reduce the destruction of the amorphous network structure and/or promote the laser ablation synthesis of heavier species from those of lower mass. In this case, many new and higher mass clusters were identified. The maximum number of (40) new clusters was detected for the Ga-Sb-Se thin film containing the highest amount of antimony (31.2 at. %). This approach opens new possibilities for laser desorption ionization/laser ablation study of other materials. Finally, for selected binary and ternary clusters, their structure was calculated by using density functional theory optimization procedure.
Zobrazit více v PubMed
Adam, J.-L. & Zhang, X. Chalcogenide glasses: Preparation, properties and applications. (Woodhead Publishing limited, 2014).
Song S, et al. Spin-coating of Ge23Sb7S70 chalcogenide glass thin films. J. Non. Cryst. Solids. 2009;355:2272–2278. doi: 10.1016/j.jnoncrysol.2009.07.015. DOI
Song X, Zhou W, Liu X, Gu Y, Zhang S. Layer-controlled band alignment, work function and optical properties of few-layer GeSe. Phys. B Condens. Matter. 2017;519:90–94. doi: 10.1016/j.physb.2017.05.054. DOI
Wang Y, et al. Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses. J. Non. Cryst. Solids. 2017;459:88–93. doi: 10.1016/j.jnoncrysol.2017.01.004. DOI
Qiao C, et al. Evolution of short- and medium-range order in the melt-quenching amorphization of Ge2Sb2Te5. J. Mater. Chem. C. 2018;6:5001. doi: 10.1039/C8TC00549D. DOI
Xu M, Cheng YQ, Sheng HW, Ma E. Nature of atomic bonding and atomic structure in the phase-change Ge2Sb2Te5 glass. Phys. Rev. Lett. 2009;103:195502. doi: 10.1103/PhysRevLett.103.195502. PubMed DOI
Xu K, Miao X, Xu M. The structure of phase-change chalcogenides and their high- pressure behavior. Phys. Status Solidi RRL. 2019;13:1800506. doi: 10.1002/pssr.201800506. DOI
Guo YR, et al. Structural signature and transition dynamics of Sb2Te3 melt upon fast cooling. Phys. Chem. Chem. Phys. 2018;20:11768. doi: 10.1039/C8CP00142A. PubMed DOI
Molnar S, Bohdan R, Takats V, Kaganovskii Y, Kokenyesi S. Viscosity of As20Se80 amorphous chalcogenide films. Mater. Lett. 2018;228:384–386. doi: 10.1016/j.matlet.2018.06.065. DOI
Mehta N. Applications of chalcogenide glasses in electronics and optoelectronics: A review. J. Sci. Ind. Res. 2006;65:777–786.
Raoux S, Wełnic W, Lelmini D. Phase change materials and their application to nonvolatile memories. Chem. Rev. 2010;110:240–267. doi: 10.1021/cr900040x. PubMed DOI
Eggleton BJ, Luther-Davies B, Richardson K. Chalcogenide photonics. Nat. Photonics. 2011;5:141–148. doi: 10.1038/nphoton.2011.309. DOI
Zakery A, Elliott SR. Optical properties and applications of chalcogenide glasses: a review. J. Non. Cryst. Solids. 2003;330:1–12. doi: 10.1016/j.jnoncrysol.2003.08.064. DOI
Zakery, A. & Elliott, S. Optical Nonlinearities in Chalcogenide Glasses and their Applications. 135, (Springer Berlin Heidelberg, 2007).
Olivier M, et al. Photosensitivity of pulsed laser deposited Ge-Sb-Se thin films. Opt. Mater. Express. 2015;5:781–793. doi: 10.1364/OME.5.000781. DOI
Bouška M, et al. Pulsed laser deposited GeTe-rich GeTe-Sb2Te3thin films. Sci. Rep. 2016;6:26552. doi: 10.1038/srep26552. PubMed DOI PMC
Halenkovič T, et al. Amorphous Ge-Sb-Se thin films fabricated by co-sputtering: Properties and photosensitivity. J. Am. Ceram. Soc. 2018;101:2877–2887. doi: 10.1111/jace.15453. DOI
Baudet E, et al. Experimental design approach for deposition optimization of RF sputtered chalcogenide thin films devoted to environmental optical sensors. Sci. Rep. 2017;7:3500. doi: 10.1038/s41598-017-03678-w. PubMed DOI PMC
Verger F, et al. RF sputtered amorphous chalcogenide thin films for surface enhanced infrared absorption spectroscopy. Opt. Mater. Express. 2013;3:2112–2131. doi: 10.1364/OME.3.002112. DOI
Mandal D, et al. Intensity mediated change in the sign of ultrafast third-order nonlinear optical response in As2S2 thin films. Opt. Lett. 2018;43:4787–4790. doi: 10.1364/OL.43.004787. PubMed DOI
Benjamin SL, et al. Chemical vapour deposition of antimony chalcogenides with positional and orientational control: Precursor design and substrate selectivity. J. Mater. Chem. C. 2015;3:423–430. doi: 10.1039/C4TC02327G. DOI
Abrutis A, et al. Chemical vapor deposition of chalcogenide materials for phase-change memories. Microelectron. Eng. 2008;85:2338–2341. doi: 10.1016/j.mee.2008.09.014. DOI
Němec P, et al. Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near- and middle-infrared spectral regions. Mater. Res. Bull. 2014;51:176–179. doi: 10.1016/j.materresbull.2013.11.050. DOI
Wei WH, Wang RP, Shen X, Fang L, Luther-Davies B. Correlation between structural and physical properties in Ge-Sb-Se glasses. J. Phys. Chem. C. 2013;117:16571–16576. doi: 10.1021/jp404001h. DOI
Yang A, et al. Ga-Sb-S chalcogenide glasses for mid-infrared applications. J. Am. Ceram. Soc. 2016;99:12–15. doi: 10.1111/jace.14025. DOI
Lecomte A, Nazabal V, Le Coq D, Calvez L. Ge-free chalcogenide glasses based on Ga-Sb-Se and their stabilization by iodine incorporation. J. Non. Cryst. Solids. 2018;481:543–547. doi: 10.1016/j.jnoncrysol.2017.11.046. DOI
Mairaj, A. K. et al. Advances in gallium lanthanum sulphide glass for optical fiber and devices. In SPIE 4204, Fiber Optic SensorTechnology II (eds Culshaw, B., Harrington, J. A., Marcus, M. A. & Saad, M.) 278–286, 10.1117/12.417421 (2001).
Schweizer T, Hewak DW, Samson BN, Payne DN. Spectroscopic data of the 1.8-, 2.9-, and 4.3-mm transitions in dysprosium-doped gallium lanthanum sulfide glass. Opt. Lett. 1996;21:1594–1596. doi: 10.1364/OL.21.001594. PubMed DOI
Tawarayama H, et al. Optical amplification at 1.3 μm in a praseodymium-doped sulfide-glass fiber. J. Am. Ceram. Soc. 2000;96:792–796.
Li G, et al. Er3+ doped and Er3+/Pr3+ co-doped gallium-antimony-sulphur chalcogenide glasses for infrared applications. Opt. Mater. Express. 2016;6:3849. doi: 10.1364/OME.6.003849. DOI
Jiao Q, et al. Effect of gallium environment on infrared emission in Er3+-doped gallium-antimony-sulfur glasses. Sci. Rep. 2017;7:41168. doi: 10.1038/srep41168. PubMed DOI PMC
Lu Y, et al. Phase change characteristics of Sb-rich Ga-Sb-Se materials. J. Alloys Compd. 2014;586:669–673. doi: 10.1016/j.jallcom.2013.10.076. DOI
Lu Y, et al. Ga-Sb-Se material for low-power phase change memory. Appl. Phys. Lett. 2011;99:243111. doi: 10.1063/1.3669699. DOI
Pangavhane SD, et al. Laser desorption ionization time-of-flight mass spectrometry of erbium-doped Ga-Ge-Sb-S glasses. Rapid Commun. Mass Spectrom. 2014;28:1221–1232. doi: 10.1002/rcm.6896. PubMed DOI
Pangavhane S, Němec P, Wagner T, Janca J, Havel J. Laser desorption ionization time-of-flight mass spectrometric study of binary As-Se glasses. Rapid Commun. Mass Spectrom. 2010;24:2000–2008. doi: 10.1002/rcm.4607. PubMed DOI
Šútorová K, et al. Laser desorption ionization time-of-flight mass spectrometry of glasses and amorphous films from Ge-As-Se system. J. Am. Ceram. Soc. 2016;99:3594–3599. doi: 10.1111/jace.14366. DOI
Houška J, et al. Laser ablation of AgSbS2 and cluster analysis by time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2009;23:1715–1718. doi: 10.1002/rcm.4048. PubMed DOI
Mawale RM, et al. Laser desorption ionization of As2Ch3 (Ch = S, Se, and Te) chalcogenides using quadrupole ion trap time-of-flight mass spectrometry: A comparative study. J. Am. Soc. Mass Spectrom. 2017;28:2569–2579. doi: 10.1007/s13361-017-1785-x. PubMed DOI
Urban PL, Amantonico A, Zenobi R. Lab-on-a-plate: Extending the functionality of MALDI-MS and LDI-MS targets. Mass Spectrom. Rev. 2011;30:435–478. doi: 10.1002/mas.20288. PubMed DOI
Hung KC, Rashidzadeh H, Wang Y, Guo B. Use of paraffin wax film in MALDI-ToF analysis of DNA. Anal. Chem. 1998;70:3088–3093. doi: 10.1021/ac980090e. PubMed DOI
Wang J, Chen R, Ma M, Li L. MALDI MS sample preparation by using paraffin wax film: Systematic study and application for peptide analysis. Anal. Chem. 2008;80:491–500. doi: 10.1021/ac701614f. PubMed DOI
Zhao Y, Xu W, Li Q, Xie Y, Schaefer HF. Gallium clusters Gan (n = 1-6): Structures, thermochemistry, and electron affinities. J. Phys. Chem. A. 2004;108:7448–7459. doi: 10.1021/jp0402784. DOI
Núñez S, López JM, Aguado A. Neutral and charged gallium clusters: Structures, physical properties and implications for the melting features. Nanoscale. 2012;4:6481–6492. doi: 10.1039/c2nr31222k. PubMed DOI
Drebov N, Weigend F, Ahlrichs R. Structures and properties of neutral gallium clusters: A theoretical investigation. J. Chem. Phys. 2011;135:044314. doi: 10.1063/1.3615501. PubMed DOI
Gong XG, Tosatti E. Structure of small gallium clusters. Phys. Lett. A. 1992;166:369–372. doi: 10.1016/0375-9601(92)90725-2. DOI
Geusic ME, Freeman RR, Duncan MA. Neutral and ionic clusters of antimony and bismuth: A comparison of magic numbers. J. Chem. Phys. 1988;89:223–229. doi: 10.1063/1.455509. DOI
Sundararajan V, Kumar V. Ab initio molecular dynamics study of antimony clusters. J. Chem. Phys. 1995;102:9631–9637. doi: 10.1063/1.468781. DOI
Jones RO, Ahlstedt O, Akola J, Ropo M. Density functional study of structure and dynamics in liquid antimony and Sbn clusters. J. Chem. Phys. 2017;146:194502. doi: 10.1063/1.4983219. PubMed DOI PMC
Alparone A. Density functional theory Raman spectra of cyclic selenium clusters Sen (n = 5–12) Comput. Theor. Chem. 2012;988:81–85. doi: 10.1016/j.comptc.2012.02.031. DOI
Hohl D, Jones RO, Car R, Parrinello M. The structure of selenium clusters Se3 to Se8. Chem. Phys. Lett. 1987;139:540–545. doi: 10.1016/0009-2614(87)87339-6. DOI
Gurin, V., Shpotyuk, O. & Boyko, V. Calculation of small arsenic and antimony chalcogenide clusters with an application to vitreous chalcogenide structure. 6 arXiv.1504.00246v1 (2015).
Ghalouci L, et al. First principle investigation into hexagonal and cubic structures of Gallium Selenide. Comput. Mater. Sci. 2013;67:73–82. doi: 10.1016/j.commatsci.2012.08.034. DOI
Pečinka L, Lubomir P, Havel J. Gallium selenide clusters generated via laser desorption ionisation time-of-flight quadrupole ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 2019;33:719–726. doi: 10.1002/rcm.8403. PubMed DOI
Fei H, Prokes L, Havel J. Laser ablation generation of antimony selenide clusters: laser desorption ionization (LDI) quadrupole ion trap time of flight mass spectrometry. J. Am. Soc. Mass Spectrom. 2019;30:634–638. doi: 10.1007/s13361-018-2119-3. PubMed DOI
van Lenthe E, Baerends EJ. Optimized Slater-type basis sets for the elements 1-118. J. Comput. Chem. 2003;24:1142–1156. doi: 10.1002/jcc.10255. PubMed DOI
van Lenthe E, Baerends EJ, Snijders JG. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 1993;99:4597–4610. doi: 10.1063/1.466059. DOI
van Lenthe E, Baerends EJ, Snijders JG. Relativistic total energy using regular approximations. J. Chem. Phys. 1994;101:9783–9792. doi: 10.1063/1.467943. DOI
van Lenthe E, Ehlers A, Baerends E. Geometry optimizations in the zero order regular approximation for relativistic effects. J. Chem. Phys. 1999;110:8943–8953. doi: 10.1063/1.478813. DOI
Swart M, Ehlers AW, Lammertsma K. Performance of the OPBE exchange-correlation functional. Mol. Phys. 2004;102:2467–2474. doi: 10.1080/0026897042000275017. DOI
Velde GTE, et al. Chemistry with ADF. J. Comput. Chem. 2001;22:931–967. doi: 10.1002/jcc.1056. DOI
Guerra CF, Snijders JG, Velde G, Baerends EJ. Regular article Towards an order- N DFT method. Theor. Chem. Acc. 1998;99:391–403.
Frisch, M. J. et al. Gaussian 16, Revision B.01. Gaussian, Inc., (Wallingford CT, 2016).
Sladkova K, Houska J, Havel J. Laser desorption ionization of red phosphorus clusters and their use for mass calibration in time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2009;23:3114–3118. doi: 10.1002/rcm.4230. PubMed DOI