Arsenic-Doped SnSe Thin Films Prepared by Pulsed Laser Deposition
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34278134
PubMed Central
PMC8280661
DOI
10.1021/acsomega.1c01892
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Pulsed UV laser deposition was exploited for the preparation of thin Sn50-x As x Se50 (x = 0, 0.05, 0.5, and 2.5) films with the aim of investigating the influence of low arsenic concentration on the properties of the deposited layers. It was found that the selected deposition method results in growth of a highly (h00) oriented orthorhombic SnSe phase. The thin films were characterized by different techniques such as X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy, atomic force microscopy, Raman scattering spectroscopy, and spectroscopic ellipsometry. From the results, it can be concluded that thin films containing 0.5 atom % of As exhibited extreme values regarding crystallite size, unit cell volume, or refractive index that significantly differ from those of other samples. Laser ablation with quadrupole ion trap time-of-flight mass spectrometry was used to identify and compare species present in the plasma originating from the interaction of a laser pulse with solid-state Sn50-x As x Se50 materials in both forms, i.e. parent powders as well as deposited thin films. The mass spectra of both materials were similar; particularly, signals of Sn m Se n + clusters with low m and n values were observed.
Zobrazit více v PubMed
Zhang Z.; Zhao X. X.; Li J. SnSex flowerlike composites as anode materials for sodium ion batteries. Mater. Lett. 2016, 162, 169–172. 10.1016/j.matlet.2015.09.126. DOI
Zhang C. L.; Yin H. H.; Han M.; Dai Z. H.; Pang H.; Zheng Y. L.; Lan Y. Q.; Bao J. C.; Zhu J. M. Two-Dimensional Tin Selenide Nanostructures for Flexible All-Solid-State Supercapacitors. ACS Nano 2014, 8, 3761–3770. 10.1021/nn5004315. PubMed DOI
Shi W. R.; Gao M. X.; Wei J. P.; Gao J. F.; Fan C. W.; Ashalley E.; Li H. D.; Wang Z. M. Tin Selenide (SnSe): Growth, Properties, and Applications. Adv. Sci. 2018, 5, 170060210.1002/advs.201700602. PubMed DOI PMC
Chen Z. G.; Shi X. L.; Zhao L. D.; Zou J. High-performance SnSe thermoelectric materials: Progress and future challenge. Prog. Mater. Sci. 2018, 97, 283–346. 10.1016/j.pmatsci.2018.04.005. DOI
Protsak I. S.; Champet S.; Chiang C. Y.; Zhou W. Z.; Popuri S. R.; Bos J. W. G.; Misra D. K.; Morozov Y. M.; Gregory D. H. Toward New Thermoelectrics: Tin Selenide/Modified Graphene Oxide Nanocomposites. ACS Omega 2019, 4, 6010–6019. 10.1021/acsomega.8b03146. PubMed DOI PMC
Rehman S. U.; Butt F. K.; Hayat F.; Ul Haq B.; Tariq Z.; Aleem F.; Li C. B. An insight into a novel cubic phase SnSe for prospective applications in optoelectronics and clean energy devices. J. Alloys Compd. 2018, 733, 22–32. 10.1016/j.jallcom.2017.10.192. DOI
Feleni U.; Ajayi R.; Jijana A.; Sidwaba U.; Douman S.; Baker P.; Iwuoha E. Tin Selenide Quantum Dots Electrochemical Biotransducer for the Determination of Indinavir - A Protease Inhibitor Anti-Retroviral Drug. J. Nano Res. 2017, 45, 12–24. 10.4028/www.scientific.net/JNanoR.45.12. DOI
Zhao L. D.; Lo S. H.; Zhang Y. S.; Sun H.; Tan G. J.; Uher C.; Wolverton C.; Dravid V. P.; Kanatzidis M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377. 10.1038/nature13184. PubMed DOI
Wei P. C.; Bhattacharya S.; He J.; Neeleshwar S.; Podila R.; Chen Y. Y.; Rao A. M. The intrinsic thermal conductivity of SnSe. Nature 2016, 539, E1–E2. 10.1038/nature19832. PubMed DOI
Feutelais Y.; Majid M.; Legendre B.; Fries S. G. Phase diagram investigation and proposition of a thermodynamic evaluation of the tin-selenium system. J. Phase Equilib. 1996, 17, 40–49. 10.1007/BF02648368. DOI
Okamoto H. Se-Sn (selenium-tin). J. Phase Equilib. 1998, 19, 293.10.1361/105497198770342544. DOI
Nguyen-Cong K.; Gonzalez J. M.; Steele B. A.; Oleynik I. I. Tin-Selenium Compounds at Ambient and High Pressures. J. Phys. Chem. C 2018, 122, 18274–18281. 10.1021/acs.jpcc.8b04881. DOI
Mukhokosi E. P.; Krupanidhi S. B.; Nanda K. K. Band Gap Engineering of Hexagonal SnSe2 Nanostructured Thin Films for Infra-Red Photodetection. Sci. Rep. 2017, 7, 1521510.1038/s41598-017-15519-x. PubMed DOI PMC
Li X. Y.; Li L.; Zhao H. C.; Ruan S. C.; Zhang W. F.; Yan P. G.; Sun Z. H.; Liang H. W.; Tao K. Y. SnSe2 Quantum Dots: Facile Fabrication and Application in Highly Responsive UV-Detectors. Nanomaterials 2019, 9, 132410.3390/nano9091324. PubMed DOI PMC
Tan P. F.; Chen X.; Wu L. D.; Shang Y. Y.; Liu W. W.; Pan J.; Xiong X. Hierarchical flower-like SnSe2 supported Ag3PO4 nanoparticles: Towards visible light driven photocatalyst with enhanced performance. Appl. Catal., B 2017, 202, 326–334. 10.1016/j.apcatb.2016.09.033. DOI
Liu M.; Shi Y.; Zhang G. P.; Zhang Y. H.; Wu M. M.; Ren J. F.; Man B. Y. Surface-Enhanced Raman Spectroscopy of Two-Dimensional Tin Diselenide Nanoplates. Appl. Spectrosc. 2018, 72, 1613–1620. 10.1177/0003702818794685. PubMed DOI
Moreira Ó. L. C.; Cheng W. Y.; Fuh H. R.; Chien W. C.; Yang W. J.; Fei H. F.; Xu H. J.; Zhang D.; Chen Y. H.; Zhao Y. F.; Lv Y. H.; Wu G.; Lv C. Z.; Arora S. K.; Coileain C. O.; Heng C. L.; Chang C. R.; Wu H. C. High Selectivity Gas Sensing and Charge Transfer of SnSe2. ACS Sens. 2019, 4, 2546–2552. 10.1021/acssensors.9b01461. PubMed DOI
Veeralingam S.; Sahatiya P.; Badhulika S. Low cost, flexible and disposable SnSe2 based photoresponsive ammonia sensor for detection of ammonia in urine samples. Sens. Actuators, B 2019, 297, 12672510.1016/j.snb.2019.126725. DOI
Chung K. M.; Wamwangi D.; Woda M.; Wuttig M.; Bensch W. Investigation of SnSe, SnSe2, and Sn2Se3 alloys for phase change memory applications. J. Appl. Phys. 2008, 103, 08352310.1063/1.2894903. DOI
Chen C. L.; Wang H.; Chen Y. Y.; Day T.; Snyder G. J. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J. Mater. Chem. A 2014, 2, 11171–11176. 10.1039/C4TA01643B. DOI
Li J. C.; Li D.; Qin X. Y.; Zhang J. Enhanced thermoelectric performance of p-type SnSe doped with Zn. Scr. Mater. 2017, 126, 6–10. 10.1016/j.scriptamat.2016.08.009. DOI
Gao J. L.; Xu G. Y. Thermoelectric performance of polycrystalline Sn1-xCuxSe (x=0-0.03) prepared by high pressure method. Intermetallics 2017, 89, 40–45. 10.1016/j.intermet.2017.05.018. DOI
Duong A. T.; Nguyen V. Q.; Duvjir G.; Duong V. T.; Kwon S.; Song J. Y.; Lee J. K.; Lee J. E.; Park S.; Min T.; Lee J.; Kim J.; Cho S. Achieving ZT=2.2 with Bi-doped n-type SnSe single crystals. Nat. Commun. 2016, 7, 1371310.1038/ncomms13713. PubMed DOI PMC
Sraitrova K. C.; Cizek J.; Holy V.; Kasparova J.; Plechacek T.; Kucek V.; Navratil J.; Krejcova A.; Drasar C. As-doped SnSe single crystals: Ambivalent doping and interaction with intrinsic defects. Phys. Rev. B 2021, 103, 08520310.1103/PhysRevB.103.085203. DOI
Raoux S.; Welnic W.; Ielmini D. Phase change materials and their application to nonvolatile memories. Chem. Rev. 2010, 110, 240–267. 10.1021/cr900040x. PubMed DOI
Song L. R.; Zhang J. W.; Iversen B. B. Enhanced thermoelectric properties of SnSe thin films grown by single-target magnetron sputtering. J. Mater. Chem. A 2019, 7, 17981–17986. 10.1039/C9TA03252E. DOI
Chandra G. H.; Kumar J. N.; Rao N. M.; Uthanna S. Preparation and characterization of flash evaporated tin selenide thin films. J. Cryst. Growth 2007, 306, 68–74. 10.1016/j.jcrysgro.2007.05.004. DOI
Martínez-Escobar D.; Ramachandran M.; Sanchez-Juarez A.; Rios J. S. N. Optical and electrical properties of SnSe2 and SnSe thin films prepared by spray pyrolysis. Thin Solid Films 2013, 535, 390–393. 10.1016/j.tsf.2012.12.081. DOI
Drozd V. E.; Nikiforova I. O.; Bogevolnov V. B.; Yafyasov A. M.; Filatova E. O.; Papazoglou D. ALD synthesis of SnSe layers and nanostructures. J. Phys. D: Appl. Phys. 2009, 42, 12530610.1088/0022-3727/42/12/125306. DOI
Suen C. H.; Shi D. L.; Su Y.; Zhang Z.; Chan C. H.; Tang X. D.; Li Y.; Lam K. H.; Chen X. X.; Huang B. L.; Zhou X. Y.; Dai J. Y. Enhanced thermoelectric properties of SnSe thin films grown by pulsed laser glancing-angle deposition. J. Materiomics 2017, 3, 293–298. 10.1016/j.jmat.2017.05.001. DOI
Němec P.; Takats V.; Csik A.; Kokenyesi S. GeSe/GeS nanomultilayers prepared by pulsed laser deposition. J. Non-Cryst. Solids 2008, 354, 5421–5424. 10.1016/j.jnoncrysol.2008.09.006. DOI
Bouška M.; Pechev S.; Simon Q.; Boidin R.; Nazabal V.; Gutwirth J.; Baudet E.; Nemec P. Pulsed laser deposited GeTe-rich GeTe-Sb2Te3 thin films. Sci. Rep. 2016, 6, 2655210.1038/srep26552. PubMed DOI PMC
Cappelli E.; Bellucci A.; Medici L.; Mezzi A.; Kaciulis S.; Fumagalli F.; Di Fonzo F.; Trucchi D. M. Nano-crystalline Ag-PbTe thermoelectric thin films by a multi-target PLD system. Appl. Surf. Sci. 2015, 336, 283–289. 10.1016/j.apsusc.2014.12.031. DOI
Pangavhane S. D.; Nemec P.; Nazabal V.; Moreac A.; Jovari P.; Havel J. Laser desorption ionization time-of-flight mass spectrometry of erbium-doped Ga-Ge-Sb-S glasses. Rapid Commun. Mass Spectrom. 2014, 28, 1221–1232. 10.1002/rcm.6896. PubMed DOI
Mawale R. M.; Ausekar M. V.; Prokes L.; Nazabal V.; Baudet E.; Halenkovic T.; Bouska M.; Alberti M.; Nemec P.; Havel J. Laser Desorption Ionization of As(2)Ch(3) (Ch = S, Se, and Te) Chalcogenides Using Quadrupole Ion Trap Time-of-Flight Mass Spectrometry: A Comparative Study. J. Am. Soc. Mass Spectrom. 2017, 28, 2569–2579. 10.1007/s13361-017-1785-x. PubMed DOI
Mawale R.; Halenkovic T.; Bouska M.; Gutwirth J.; Nazabal V.; Bora P. L.; Pecinka L.; Prokes L.; Havel J.; Nemec P. Mass spectrometric investigation of amorphous Ga-Sb-Se thin films. Sci. Rep. 2019, 9, 1021310.1038/s41598-019-46767-8. PubMed DOI PMC
Šútorová K.; Prokes L.; Nazabal V.; Bouska M.; Havel J.; Nemec P. Laser Desorption Ionisation Time-of-Flight Mass Spectrometry of Chalcogenide Glasses from (GeSe2)100-x(Sb2Se3)x System. J. Am. Ceram. Soc. 2015, 98, 4107–4110. 10.1111/jace.13857. DOI
Chandrasekhar H. R.; Humphreys R. G.; Zwick U.; Cardona M. IR and Raman spectra of the IV-VI compounds SnS and SnSe. Phys. Rev. B 1977, 15, 2177–2183. 10.1103/PhysRevB.15.2177. DOI
Li X. Z.; Xia J.; Wang L.; Gu Y. Y.; Cheng H. Q.; Meng X. M. Layered SnSe nano-plates with excellent in-plane anisotropic properties of Raman spectrum and photo-response. Nanoscale 2017, 9, 14558–14564. 10.1039/C7NR05047J. PubMed DOI
Gong X. N.; Feng M. L.; Wu H.; Zhou H. P.; Suen C. H.; Zou H. J.; Guo L. J.; Zhou K.; Chen S. J.; Dai J. Y.; Wang G. Y.; Zhou X. Y. Highly (100)-orientated SnSe thin films deposited by pulsed-laser deposition. Appl. Surf. Sci. 2021, 535, 14769410.1016/j.apsusc.2020.147694. DOI
Li Z.; Guo Y.; Zhao F.; Nie C.; Li H.; Shi J.; Liu X.; Jiang J.; Zuo S. Effect of film thickness and evaporation rate on co-evaporated SnSe thin films for photovoltaic applications. RSC Adv. 2020, 10, 16749–16755. 10.1039/D0RA01749C. PubMed DOI PMC
Luo H.; Liang L. Y.; Cao H. T.; Liu Z. M.; Zhuge F. Structural, Chemical, Optical, and Electrical Evolution of SnOx Films Deposited by Reactive rf Magnetron Sputtering. ACS Appl. Mater. Interfaces 2012, 4, 5673–5677. 10.1021/am301601s. PubMed DOI
Geurts J.; Rau S.; Richter W.; Schmitte F. J. SnO films and their oxidation to SnO2 - Raman scattering, IR reflectivity and X-ray diffraction studies. Thin Solid Films 1984, 121, 217–225. 10.1016/0040-6090(84)90303-1. DOI
Lefebvre I.; Szymanski M. A.; Olivier-Fourcade J.; Jumas J. C. Electronic structure of tin monochalcogenides from SnO to SnTe. Phys. Rev. B 1998, 58, 1896–1906. 10.1103/PhysRevB.58.1896. DOI
Li L.; Chen Z.; Hu Y.; Wang X. W.; Zhang T.; Chen W.; Wang Q. B. Single-Layer Single-Crystalline SnSe Nanosheets. J. Am. Chem. Soc. 2013, 135, 1213–1216. 10.1021/ja3108017. PubMed DOI
Jang K.; Lee I. Y.; Xu J.; Choi J.; Jin J.; Park J. H.; Kim H. J.; Kim G. H.; Son S. U. Colloidal Synthesis of SnSe Nanocolumns through Tin Precursor Chemistry and Their Optoelectrical Properties. Cryst. Growth Des. 2012, 12, 3388–3391. 10.1021/cg300579k. DOI
Bhatt V. P.; Gireesan K.; Desai C. F. Electrooptic properties of polycrystalline SnSe thin-films. Cryst. Res. Technol. 1989, 24, 187–192. 10.1002/crat.2170240212. DOI
Soliman H. S.; Hady D. A. A.; Rahman K. F. A.; Youssef S. B.; Elshazly A. A. Optical properties of tin-selenid films. Phys. A 1995, 216, 77–84. 10.1016/0378-4371(94)00298-8. DOI
Teghil R.; Santagata A.; Marotta V.; Orlando S.; Pizzella G.; Giardiniguidoni A.; Mele A. Characterization of the plasma plume and of thin-film epitaxially produced during laser-ablation of SnSe. Appl. Surf. Sci. 1995, 90, 505–514. 10.1016/0169-4332(95)00179-4. DOI
Kumar N.; Parihar U.; Kumar R.; Patel K. J.; Panchal C. J.; Padha N. Effect of film thickness on optical properties of tin selenide thin films prepared by thermal evaporation for photovoltaic applications. Am. J. Mater. Sci. 2012, 2, 41–45. 10.5923/j.materials.20120201.08. DOI
El-Menyawy E. M.; Azab A. A.; El-Khalawany L. M.; Okasha N.; Terra F. S. Influence of annealing temperatures on the structural, optical and electrical properties of SnSe films. J. Mater. Sci.-Mater. Electron. 2018, 29, 8354–8363. 10.1007/s10854-018-8846-1. DOI
Majumder C.; Kumar V.; Mizuseki H.; Kawazoe Y. Small clusters of tin: Atomic structures, energetics, and fragmentation behavior. Phys. Rev. B 2001, 64, 23340510.1103/PhysRevB.64.233405. DOI
Oger E.; Kelting R.; Weis P.; Lechtken A.; Schooss D.; Crawford N. R. M.; Ahlrichs R.; Kappes M. M. Small tin cluster anions: Transition from quasispherical to prolate structures. J. Chem. Phys. 2009, 130, 12430510.1063/1.3094320. PubMed DOI
Drebov N.; Oger E.; Rapps T.; Kelting R.; Schooss D.; Weis P.; Kappes M. M.; Ahlrichs R. Structures of tin cluster cations Sn-3(+) to Sn-15(+). J. Chem. Phys. 2010, 133, 22430210.1063/1.3514907. PubMed DOI
Hohl D.; Jones R. O.; Car R.; Parrinello M. The structure of selenium clusters - Se3 to Se8. Chem. Phys. Lett. 1987, 139, 540–545. 10.1016/0009-2614(87)87339-6. DOI
Xu W. G.; Bai W. J. The selenium clusters Se-n (n=1-5) and their anions: Structures and electron affinities. J. Mol. Struct.: THEOCHEM 2008, 854, 89–105. 10.1016/j.theochem.2007.12.040. DOI
Alparone A. Density functional theory Raman spectra of cyclic selenium clusters Se-n (n=5-12). Comput. Theor. Chem. 2012, 988, 81–85. 10.1016/j.comptc.2012.02.031. DOI
Taniguchi M.; Johnson R. L.; Ghijsen J.; Cardona M. Core excitons and conduction-band structures in orthorhombic GeS, GeSe, SnS, and SnSe single-crystals. Phys. Rev. B 1990, 42, 3634–3643. 10.1103/PhysRevB.42.3634. PubMed DOI
Kim S. U.; Duong A. T.; Cho S.; Rhim S. H.; Kim J. A microscopic study investigating the structure of SnSe surfaces. Surf. Sci. 2016, 651, 5–9. 10.1016/j.susc.2016.03.013. DOI
Nguyen V. Q.; Kim J.; Cho S. A Review of SnSe: Growth and Thermoelectric Properties. J. Korean Phys. Soc. 2018, 72, 841–857. 10.3938/jkps.72.841. DOI
Ferlauto A. S.; Ferreira G. M.; Pearce J. M.; Wronski C. R.; Collins R. W.; Deng X. M.; Ganguly G. Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics. J. Appl. Phys. 2002, 92, 2424–2436. 10.1063/1.1497462. DOI
Baudet E.; Sergent M.; Nemec P.; Cardinaud C.; Rinnert E.; Michel K.; Jouany L.; Bureau B.; Nazabal V. Experimental design approach for deposition optimization of RF sputtered chalcogenide thin films devoted to environmental optical sensors. Sci. Rep. 2017, 7, 350010.1038/s41598-017-03678-w. PubMed DOI PMC
Kolářová L.; Prokes L.; Kucera L.; Hampl A.; Pena-Mendez E.; Vanhara P.; Havel J. Clusters of Monoisotopic Elements for Calibration in (TOF) Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2017, 28, 419–427. 10.1007/s13361-016-1567-x. PubMed DOI