Experimental design approach for deposition optimization of RF sputtered chalcogenide thin films devoted to environmental optical sensors
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28615650
PubMed Central
PMC5471270
DOI
10.1038/s41598-017-03678-w
PII: 10.1038/s41598-017-03678-w
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The development of the optical bio-chemical sensing technology is an extremely important scientific and technological issue for diagnosis and monitoring of diseases, control of industrial processes, environmental detection of air and water pollutants. Owing to their distinctive features, chalcogenide amorphous thin films represent a keystone in the manufacture of middle infrared integrated optical devices for a sensitive detection of biological or environmental variations. Since the chalcogenide thin films characteristics, i.e. stoichiometric conformity, structure, roughness or optical properties can be affected by the growth process, the choice and control of the deposition method is crucial. An approach based on the experimental design is undoubtedly a way to be explored allowing fast optimization of chalcogenide film deposition by means of radio frequency sputtering process. Argon (Ar) pressure, working power and deposition time were selected as potentially the most influential factors among all possible. The experimental design analysis confirms the great influence of the Ar pressure on studied responses: chemical composition, refractive index in near-IR (1.55 µm) and middle infrared (6.3 and 7.7 µm), band-gap energy, deposition rate and surface roughness. Depending on the intended application and therefore desired thin film characteristics, mappings of the experimental design meaningfully help to select suitable deposition parameters.
Aix Marseille Université LISA EA4672 Campus scientifique de Saint Jérôme 13397 Marseille France
Institut des matériaux Jean Rouxel UMR 6502 Université de Nantes CNRS 44322 Nantes Cedex 3 France
Institut des Sciences Chimiques de Rennes UMR CNRS 6226 Université de Rennes 1 35042 Rennes France
Zobrazit více v PubMed
Rodenas A, et al. Three-dimensional mid-infrared photonic circuits in chalcogenide glass. Opt. Lett. 2012;37:392–394. doi: 10.1364/OL.37.000392. PubMed DOI
Sanghera JS, Shaw LB, Aggarwal ID. Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications. IEEE J. Sel. Top. Quantum Electron. 2009;15:114–119. doi: 10.1109/JSTQE.2008.2010245. DOI
Eggleton BJ, Luther-Davies B, Richardson K. Chalcogenide photonics. Nat. Photonics. 2011;5:141–148.
Anne ML, et al. Chalcogenide Glass Optical Waveguides for Infrared Biosensing. Sensors. 2009;9:7398–7411. doi: 10.3390/s90907398. PubMed DOI PMC
Seddon AB. Mid-infrared (IR)–A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Physica Status Solidi B-Basic Solid State Physics. 2013;250:1020–1027. doi: 10.1002/pssb.201248524. DOI
Le Corvec M, et al. Fast and Non-Invasive Medical Diagnostic Using Mid Infrared Sensor The AMNIFIR Project. Irbm. 2016;37:116–123. doi: 10.1016/j.irbm.2016.03.003. DOI
Han, Z. et al. On-chip mid-infrared gas detection using chalcogenide glass waveguide. Appl. Phys. Lett. 108, doi:141106 10.1063/1.4945667 (2016).
Singh, V. et al. Mid-infrared materials and devices on a Si platform for optical sensing. Science and Technology of Advanced Materials15, doi:014603 10.1088/1468-6996/15/1/014603 (2014). PubMed PMC
Ganjoo A, Jain H, Yu C, Irudayaraj J, Pantano CG. Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films. J. Non-Cryst. Solids. 2008;354:2757–2762. doi: 10.1016/j.jnoncrysol.2007.09.095. DOI
Aldo G-A, et al. Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the Mid-Infrared. Sensors and Actuators B: Chemical. 2017;242:842–848. doi: 10.1016/j.snb.2016.09.174. DOI
Baudet E, et al. Selenide sputtered films development for MIR environmental sensor. Optical Materials Express. 2016;6:2616–2627. doi: 10.1364/OME.6.002616. DOI
Hu J, et al. Flexible integrated photonics: where materials, mechanics and optics meet Invited. Optical Materials Express. 2013;3:1313–1331. doi: 10.1364/OME.3.001313. DOI
Merklein, M. et al. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits. Nature Communications6, doi:10.1038/ncomms7396 (2015). PubMed PMC
Charrier J, et al. Evanescent wave optical micro-sensor based on chalcogenide glass. Sensors and Actuators B-Chemical. 2012;173:468–476. doi: 10.1016/j.snb.2012.07.056. DOI
Huang CC, Hewak DW. High-purity germanium-sulphide glass for optoelectronic applications synthesised by chemical vapour deposition. Electron. Lett. 2004;40:863–865. doi: 10.1049/el:20045141. DOI
Marquez E, et al. Controlling the optical constants of thermally-evaporated Ge10Sb30S60 chalcogenide glass films by photodoping with silver. J. Non-Cryst. Solids. 2000;274:62–68. doi: 10.1016/S0022-3093(00)00184-8. DOI
Ivanova ZG, Koughia K, Tonchev D, Pivin JC, Kasap SO. Photoluminescence in Er-implanted amorphous Ge-S-Ga thin films. Journal of Optoelectronics and Advanced Materials. 2005;7:1271–1276.
Vigreux C, et al. Evidence of a minimum in refractive indexes of amorphous GexTe100-x films: Relevance to the development of infrared waveguides. Physica Status Solidi a-Applications and Materials Science. 2014;211:932–937. doi: 10.1002/pssa.201330407. DOI
Youden KE, et al. Pulsed-Laser Deposition of Ga-La-S Chalcogenide Glass Thin-Film Optical Wave-Guides. Appl. Phys. Lett. 1993;63:1601–1603. doi: 10.1063/1.110730. DOI
Nemec P, et al. Pulsed laser deposition of pure and praseodymium-doped Ge-Ga-Se amorphous chalcogenide films. Optical Materials. 2000;15:191–197. doi: 10.1016/S0925-3467(00)00035-5. DOI
Frumar M, et al. Thin chalcogenide films prepared by pulsed laser deposition - new amorphous materials applicable in optoelectronics and chemical sensors. J. Non-Cryst. Solids. 2006;352:544–561. doi: 10.1016/j.jnoncrysol.2005.11.043. DOI
Nazabal V, et al. Dysprosium doped amorphous chalcogenide films prepared by pulsed laser deposition. Optical Materials. 2006;29:273–278. doi: 10.1016/j.optmat.2005.08.034. DOI
Zakery A, Ruan Y, Rode AV, Samoc M, Luther-Davies B. Low-loss waveguides in ultrafast laser-deposited As2S3 chalcogenide films. Journal of the Optical Society of America B-Optical Physics. 2003;20:1844–1852. doi: 10.1364/JOSAB.20.001844. DOI
Ramachandran S, Bishop SG. Excitation of Er3+ emission by host glass absorption in sputtered films of Er-doped Ge10As40Se25S25 glass. Appl. Phys. Lett. 1998;73:3196. doi: 10.1063/1.122716. DOI
Nazabal V, et al. Sputtering and Pulsed Laser Deposition for Near- and Mid-Infrared Applications: A Comparative Study of Ge25Sb10S65 and Ge25Sb10Se65 Amorphous Thin Films. Int. J. Appl. Ceram. Technol. 2011;8:990–1000. doi: 10.1111/j.1744-7402.2010.02571.x. DOI
Frantz JA, Shaw LB, Sanghera JS, Aggarwal ID. Waveguide amplifiers in sputtered films of Er3+- doped gallium lanthanum sulfide glass. Opt. Express. 2006;14:1797–1803. doi: 10.1364/OE.14.001797. PubMed DOI
Nemec P, et al. Pulsed laser deposited amorphous chalcogenide and alumino-silicate thin films and their multilayered structures for photonic applications. Thin Solid Films. 2013;539:226–232. doi: 10.1016/j.tsf.2013.04.013. DOI
Nazabal V, et al. Sputtering and Pulsed Laser Deposition for Near- and Mid-Infrared Applications: A Comparative Study of Ge25Sb10S65 and Ge25Sb10Se65 Amorphous Thin Films. Int. J. Appl. Ceram. Technol. 2011;8:990–1000. doi: 10.1111/j.1744-7402.2010.02571.x. DOI
Nazabal V, et al. Chalcogenide coatings of Ge15Sb20S65 and Te20As30Se50. Appl. Opt. 2008;47:C114–C123. doi: 10.1364/AO.47.00C114. PubMed DOI
Charrier J, et al. Sulphide GaxGe25-xSb10S65 (x = 0, 5) sputtered films: fabrication and optical characterisation of planar and rib optical waveguides. J. Appl. Phys. 2008;104:073110. doi: 10.1063/1.2968248. DOI
Seddon, A. B. et al. Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing. Optical Engineering53, doi:07182410.1117/1.oe.53.7.071824 (2014).
Mittal, V., Wilkinson, J. S. & Murugan, G. S. High-contrast GeTe4 waveguides for mid-infrared biomedical sensing applications. Proc. SPIE 8988, Integrated Optics: Devices, Materials, and Technologies XVIII, 89881A, doi:10.1117/12.2036972 (2014).
Turnbull DA, Sanghera JS, Nguyen V, Aggarwal ID. Fabrication of waveguides in sputtered films of GeAsSe glass via photodarkening with above bandgap light. Mater. Lett. 2003;58:51–54. doi: 10.1016/S0167-577X(03)00413-0. DOI
Balan V, Vigreux C, Pradel A. Chalcogenide thin films deposited by radio-frequency sputtering. Journal of Optoelectronics and Advanced Materials. 2004;6:875–882.
Verger F, et al. RF sputtered amorphous chalcogenide thin films for surface enhanced infrared absorption spectroscopy. Optical Materials Express. 2013;3:2112–2131. doi: 10.1364/OME.3.002112. DOI
Němec P, et al. Optical properties of (GeSe2)100−x(Sb2Se3)x glasses in near- and middle-infrared spectral regions. Mater. Res. Bull. 2014;51:176–179. doi: 10.1016/j.materresbull.2013.11.050. DOI
Olivier M, et al. Structure, nonlinear properties, and photosensitivity of (GeSe2)100-x(Sb2Se3)x glasses. Optical Materials Express. 2014;4:525–540. doi: 10.1364/OME.4.000525. DOI
Baudet E, et al. Structural analysis of RF sputtered Ge-Sb-Se thin films by Raman and X-ray photoelectron spectroscopies. J. Non-Cryst. Solids. 2016;444:64–72. doi: 10.1016/j.jnoncrysol.2016.04.017. DOI
Gutierrez-Arroyo A, et al. Optical characterization at 7.7 m of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared. Opt. Express. 2016;24:23109–23117. doi: 10.1364/OE.24.023109. PubMed DOI
Baudet, E. et al. MIR attenuated total reflection sensor for the detection of aromatic hydrocarbons in water. submitted (2017).
Doehlert DH. Uniform shell designs. The Royal Statistical Society Series C-Applied Statistics. 1970;19:231.
Mathieu, D., Nony, J. & Phan Tan Luu, R. Software NEMRODW (LPRAI-Marseille). (2000).
Mattox, D. M. In Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition) 237–286 (William Andrew Publishing, 2010).
Rossnagel, S. Handbook of Thin-Film Deposition Processes and Techniques - Principles, Methods, Equipment and Applications (2nd Edition)-chap 8-Sputtering and Sputter Deposition. (2002).
Wasa, K. Handbook of Sputtering Technology (Second Edition). (William Andrew Publishing, 2012).
Sigmund P. Theory of Sputtering.I. Sputtering Yield of Amorphous and polycrystalline targets. Physical Review. 1969;184:383. doi: 10.1103/PhysRev.184.383. DOI
Seah MP. An accurate semi-empirical equation for sputtering yields, II: for neon, argon and xenon ions. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms. 2005;229:348–358. doi: 10.1016/j.nimb.2004.12.129. DOI
Seah MP, Clifford CA, Green FM, Gilmore IS. An accurate semi-empirical equation for sputtering yields I: for argon ions. Surface and Interface Analysis. 2005;37:444–458. doi: 10.1002/sia.2032. DOI
Matsunami N, et al. Energy-Dependence of the Ion-Induced Sputtering Yields of Monatomic Solids. Atomic Data and Nuclear Data Tables. 1984;31:1–80. doi: 10.1016/0092-640X(84)90016-0. DOI
Yamamura Y, Tawara H. Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence. Atomic Data and Nuclear Data Tables. 1996;62:149–253. doi: 10.1006/adnd.1996.0005. DOI
Sharda S, Sharma N, Sharma P, Sharma V. Finger prints of chemical bonds in Sb–Se–Ge and Sb–Se–Ge–In glasses: A Far-IR study. J. Non-Cryst. Solids. 2013;362:136–139. doi: 10.1016/j.jnoncrysol.2012.10.035. DOI
Rao KJ, Mohan R. Chemical bond approach to determining conductivity band gaps in amorphous chalcogenides and pnictides. Solid State Commun. 1981;39:1065–1068. doi: 10.1016/0038-1098(81)90209-X. DOI
Tichý L, Tichá H. Covalent bond approach to the glass-transition temperature of chalcogenide glasses. J. Non-Cryst. Solids. 1995;189:141–146. doi: 10.1016/0022-3093(95)00202-2. DOI
Adam, J.-L. & Zhang, X. H. Chalcogenide Glasses: Preparation, properties and application. Woodhead Publishing series in Electronic and Optical Materials44 (2014).
Thompson MW. Energy Spectrum of Ejected Atoms During High Energy Sputtering of Gold. Philosophical Magazine. 1968;18:377. doi: 10.1080/14786436808227358. DOI
Woollam, J. A. et al. In Characterization and Metrology for Ulsi Technology 2000, International Conference Vol. 550 AIP Conference Proceedings 511–518 (Amer Inst Physics, 2001).
Jellison GE, Modine FA. Parameterization of the optical functions of amorphous materials in the interband region (vol 69, pg 371, 1996) Appl. Phys. Lett. 1996;69:2137–2137. doi: 10.1063/1.118155. DOI
Ferlauto AS, et al. Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics. Journal of Applied Physics. 2002;92:2424–2436. doi: 10.1063/1.1497462. DOI
Nemec P, et al. Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films. Opt. Express. 2010;18:22944–22957. doi: 10.1364/OE.18.022944. PubMed DOI
Sc-doped GeTe thin films prepared by radio-frequency magnetron sputtering
Tailoring of Multisource Deposition Conditions towards Required Chemical Composition of Thin Films
Arsenic-Doped SnSe Thin Films Prepared by Pulsed Laser Deposition
Mass spectrometric investigation of amorphous Ga-Sb-Se thin films