Experimental design approach for deposition optimization of RF sputtered chalcogenide thin films devoted to environmental optical sensors

. 2017 Jun 14 ; 7 (1) : 3500. [epub] 20170614

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28615650
Odkazy

PubMed 28615650
PubMed Central PMC5471270
DOI 10.1038/s41598-017-03678-w
PII: 10.1038/s41598-017-03678-w
Knihovny.cz E-zdroje

The development of the optical bio-chemical sensing technology is an extremely important scientific and technological issue for diagnosis and monitoring of diseases, control of industrial processes, environmental detection of air and water pollutants. Owing to their distinctive features, chalcogenide amorphous thin films represent a keystone in the manufacture of middle infrared integrated optical devices for a sensitive detection of biological or environmental variations. Since the chalcogenide thin films characteristics, i.e. stoichiometric conformity, structure, roughness or optical properties can be affected by the growth process, the choice and control of the deposition method is crucial. An approach based on the experimental design is undoubtedly a way to be explored allowing fast optimization of chalcogenide film deposition by means of radio frequency sputtering process. Argon (Ar) pressure, working power and deposition time were selected as potentially the most influential factors among all possible. The experimental design analysis confirms the great influence of the Ar pressure on studied responses: chemical composition, refractive index in near-IR (1.55 µm) and middle infrared (6.3 and 7.7 µm), band-gap energy, deposition rate and surface roughness. Depending on the intended application and therefore desired thin film characteristics, mappings of the experimental design meaningfully help to select suitable deposition parameters.

Zobrazit více v PubMed

Rodenas A, et al. Three-dimensional mid-infrared photonic circuits in chalcogenide glass. Opt. Lett. 2012;37:392–394. doi: 10.1364/OL.37.000392. PubMed DOI

Sanghera JS, Shaw LB, Aggarwal ID. Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications. IEEE J. Sel. Top. Quantum Electron. 2009;15:114–119. doi: 10.1109/JSTQE.2008.2010245. DOI

Eggleton BJ, Luther-Davies B, Richardson K. Chalcogenide photonics. Nat. Photonics. 2011;5:141–148.

Anne ML, et al. Chalcogenide Glass Optical Waveguides for Infrared Biosensing. Sensors. 2009;9:7398–7411. doi: 10.3390/s90907398. PubMed DOI PMC

Seddon AB. Mid-infrared (IR)–A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Physica Status Solidi B-Basic Solid State Physics. 2013;250:1020–1027. doi: 10.1002/pssb.201248524. DOI

Le Corvec M, et al. Fast and Non-Invasive Medical Diagnostic Using Mid Infrared Sensor The AMNIFIR Project. Irbm. 2016;37:116–123. doi: 10.1016/j.irbm.2016.03.003. DOI

Han, Z. et al. On-chip mid-infrared gas detection using chalcogenide glass waveguide. Appl. Phys. Lett. 108, doi:141106 10.1063/1.4945667 (2016).

Singh, V. et al. Mid-infrared materials and devices on a Si platform for optical sensing. Science and Technology of Advanced Materials15, doi:014603 10.1088/1468-6996/15/1/014603 (2014). PubMed PMC

Ganjoo A, Jain H, Yu C, Irudayaraj J, Pantano CG. Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films. J. Non-Cryst. Solids. 2008;354:2757–2762. doi: 10.1016/j.jnoncrysol.2007.09.095. DOI

Aldo G-A, et al. Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the Mid-Infrared. Sensors and Actuators B: Chemical. 2017;242:842–848. doi: 10.1016/j.snb.2016.09.174. DOI

Baudet E, et al. Selenide sputtered films development for MIR environmental sensor. Optical Materials Express. 2016;6:2616–2627. doi: 10.1364/OME.6.002616. DOI

Hu J, et al. Flexible integrated photonics: where materials, mechanics and optics meet Invited. Optical Materials Express. 2013;3:1313–1331. doi: 10.1364/OME.3.001313. DOI

Merklein, M. et al. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits. Nature Communications6, doi:10.1038/ncomms7396 (2015). PubMed PMC

Charrier J, et al. Evanescent wave optical micro-sensor based on chalcogenide glass. Sensors and Actuators B-Chemical. 2012;173:468–476. doi: 10.1016/j.snb.2012.07.056. DOI

Huang CC, Hewak DW. High-purity germanium-sulphide glass for optoelectronic applications synthesised by chemical vapour deposition. Electron. Lett. 2004;40:863–865. doi: 10.1049/el:20045141. DOI

Marquez E, et al. Controlling the optical constants of thermally-evaporated Ge10Sb30S60 chalcogenide glass films by photodoping with silver. J. Non-Cryst. Solids. 2000;274:62–68. doi: 10.1016/S0022-3093(00)00184-8. DOI

Ivanova ZG, Koughia K, Tonchev D, Pivin JC, Kasap SO. Photoluminescence in Er-implanted amorphous Ge-S-Ga thin films. Journal of Optoelectronics and Advanced Materials. 2005;7:1271–1276.

Vigreux C, et al. Evidence of a minimum in refractive indexes of amorphous GexTe100-x films: Relevance to the development of infrared waveguides. Physica Status Solidi a-Applications and Materials Science. 2014;211:932–937. doi: 10.1002/pssa.201330407. DOI

Youden KE, et al. Pulsed-Laser Deposition of Ga-La-S Chalcogenide Glass Thin-Film Optical Wave-Guides. Appl. Phys. Lett. 1993;63:1601–1603. doi: 10.1063/1.110730. DOI

Nemec P, et al. Pulsed laser deposition of pure and praseodymium-doped Ge-Ga-Se amorphous chalcogenide films. Optical Materials. 2000;15:191–197. doi: 10.1016/S0925-3467(00)00035-5. DOI

Frumar M, et al. Thin chalcogenide films prepared by pulsed laser deposition - new amorphous materials applicable in optoelectronics and chemical sensors. J. Non-Cryst. Solids. 2006;352:544–561. doi: 10.1016/j.jnoncrysol.2005.11.043. DOI

Nazabal V, et al. Dysprosium doped amorphous chalcogenide films prepared by pulsed laser deposition. Optical Materials. 2006;29:273–278. doi: 10.1016/j.optmat.2005.08.034. DOI

Zakery A, Ruan Y, Rode AV, Samoc M, Luther-Davies B. Low-loss waveguides in ultrafast laser-deposited As2S3 chalcogenide films. Journal of the Optical Society of America B-Optical Physics. 2003;20:1844–1852. doi: 10.1364/JOSAB.20.001844. DOI

Ramachandran S, Bishop SG. Excitation of Er3+ emission by host glass absorption in sputtered films of Er-doped Ge10As40Se25S25 glass. Appl. Phys. Lett. 1998;73:3196. doi: 10.1063/1.122716. DOI

Nazabal V, et al. Sputtering and Pulsed Laser Deposition for Near- and Mid-Infrared Applications: A Comparative Study of Ge25Sb10S65 and Ge25Sb10Se65 Amorphous Thin Films. Int. J. Appl. Ceram. Technol. 2011;8:990–1000. doi: 10.1111/j.1744-7402.2010.02571.x. DOI

Frantz JA, Shaw LB, Sanghera JS, Aggarwal ID. Waveguide amplifiers in sputtered films of Er3+- doped gallium lanthanum sulfide glass. Opt. Express. 2006;14:1797–1803. doi: 10.1364/OE.14.001797. PubMed DOI

Nemec P, et al. Pulsed laser deposited amorphous chalcogenide and alumino-silicate thin films and their multilayered structures for photonic applications. Thin Solid Films. 2013;539:226–232. doi: 10.1016/j.tsf.2013.04.013. DOI

Nazabal V, et al. Sputtering and Pulsed Laser Deposition for Near- and Mid-Infrared Applications: A Comparative Study of Ge25Sb10S65 and Ge25Sb10Se65 Amorphous Thin Films. Int. J. Appl. Ceram. Technol. 2011;8:990–1000. doi: 10.1111/j.1744-7402.2010.02571.x. DOI

Nazabal V, et al. Chalcogenide coatings of Ge15Sb20S65 and Te20As30Se50. Appl. Opt. 2008;47:C114–C123. doi: 10.1364/AO.47.00C114. PubMed DOI

Charrier J, et al. Sulphide GaxGe25-xSb10S65 (x = 0, 5) sputtered films: fabrication and optical characterisation of planar and rib optical waveguides. J. Appl. Phys. 2008;104:073110. doi: 10.1063/1.2968248. DOI

Seddon, A. B. et al. Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing. Optical Engineering53, doi:07182410.1117/1.oe.53.7.071824 (2014).

Mittal, V., Wilkinson, J. S. & Murugan, G. S. High-contrast GeTe4 waveguides for mid-infrared biomedical sensing applications. Proc. SPIE 8988, Integrated Optics: Devices, Materials, and Technologies XVIII, 89881A, doi:10.1117/12.2036972 (2014).

Turnbull DA, Sanghera JS, Nguyen V, Aggarwal ID. Fabrication of waveguides in sputtered films of GeAsSe glass via photodarkening with above bandgap light. Mater. Lett. 2003;58:51–54. doi: 10.1016/S0167-577X(03)00413-0. DOI

Balan V, Vigreux C, Pradel A. Chalcogenide thin films deposited by radio-frequency sputtering. Journal of Optoelectronics and Advanced Materials. 2004;6:875–882.

Verger F, et al. RF sputtered amorphous chalcogenide thin films for surface enhanced infrared absorption spectroscopy. Optical Materials Express. 2013;3:2112–2131. doi: 10.1364/OME.3.002112. DOI

Němec P, et al. Optical properties of (GeSe2)100−x(Sb2Se3)x glasses in near- and middle-infrared spectral regions. Mater. Res. Bull. 2014;51:176–179. doi: 10.1016/j.materresbull.2013.11.050. DOI

Olivier M, et al. Structure, nonlinear properties, and photosensitivity of (GeSe2)100-x(Sb2Se3)x glasses. Optical Materials Express. 2014;4:525–540. doi: 10.1364/OME.4.000525. DOI

Baudet E, et al. Structural analysis of RF sputtered Ge-Sb-Se thin films by Raman and X-ray photoelectron spectroscopies. J. Non-Cryst. Solids. 2016;444:64–72. doi: 10.1016/j.jnoncrysol.2016.04.017. DOI

Gutierrez-Arroyo A, et al. Optical characterization at 7.7 m of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared. Opt. Express. 2016;24:23109–23117. doi: 10.1364/OE.24.023109. PubMed DOI

Baudet, E. et al. MIR attenuated total reflection sensor for the detection of aromatic hydrocarbons in water. submitted (2017).

Doehlert DH. Uniform shell designs. The Royal Statistical Society Series C-Applied Statistics. 1970;19:231.

Mathieu, D., Nony, J. & Phan Tan Luu, R. Software NEMRODW (LPRAI-Marseille). (2000).

Mattox, D. M. In Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition) 237–286 (William Andrew Publishing, 2010).

Rossnagel, S. Handbook of Thin-Film Deposition Processes and Techniques - Principles, Methods, Equipment and Applications (2nd Edition)-chap 8-Sputtering and Sputter Deposition. (2002).

Wasa, K. Handbook of Sputtering Technology (Second Edition). (William Andrew Publishing, 2012).

Sigmund P. Theory of Sputtering.I. Sputtering Yield of Amorphous and polycrystalline targets. Physical Review. 1969;184:383. doi: 10.1103/PhysRev.184.383. DOI

Seah MP. An accurate semi-empirical equation for sputtering yields, II: for neon, argon and xenon ions. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms. 2005;229:348–358. doi: 10.1016/j.nimb.2004.12.129. DOI

Seah MP, Clifford CA, Green FM, Gilmore IS. An accurate semi-empirical equation for sputtering yields I: for argon ions. Surface and Interface Analysis. 2005;37:444–458. doi: 10.1002/sia.2032. DOI

Matsunami N, et al. Energy-Dependence of the Ion-Induced Sputtering Yields of Monatomic Solids. Atomic Data and Nuclear Data Tables. 1984;31:1–80. doi: 10.1016/0092-640X(84)90016-0. DOI

Yamamura Y, Tawara H. Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence. Atomic Data and Nuclear Data Tables. 1996;62:149–253. doi: 10.1006/adnd.1996.0005. DOI

Sharda S, Sharma N, Sharma P, Sharma V. Finger prints of chemical bonds in Sb–Se–Ge and Sb–Se–Ge–In glasses: A Far-IR study. J. Non-Cryst. Solids. 2013;362:136–139. doi: 10.1016/j.jnoncrysol.2012.10.035. DOI

Rao KJ, Mohan R. Chemical bond approach to determining conductivity band gaps in amorphous chalcogenides and pnictides. Solid State Commun. 1981;39:1065–1068. doi: 10.1016/0038-1098(81)90209-X. DOI

Tichý L, Tichá H. Covalent bond approach to the glass-transition temperature of chalcogenide glasses. J. Non-Cryst. Solids. 1995;189:141–146. doi: 10.1016/0022-3093(95)00202-2. DOI

Adam, J.-L. & Zhang, X. H. Chalcogenide Glasses: Preparation, properties and application. Woodhead Publishing series in Electronic and Optical Materials44 (2014).

Thompson MW. Energy Spectrum of Ejected Atoms During High Energy Sputtering of Gold. Philosophical Magazine. 1968;18:377. doi: 10.1080/14786436808227358. DOI

Woollam, J. A. et al. In Characterization and Metrology for Ulsi Technology 2000, International Conference Vol. 550 AIP Conference Proceedings 511–518 (Amer Inst Physics, 2001).

Jellison GE, Modine FA. Parameterization of the optical functions of amorphous materials in the interband region (vol 69, pg 371, 1996) Appl. Phys. Lett. 1996;69:2137–2137. doi: 10.1063/1.118155. DOI

Ferlauto AS, et al. Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics. Journal of Applied Physics. 2002;92:2424–2436. doi: 10.1063/1.1497462. DOI

Nemec P, et al. Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films. Opt. Express. 2010;18:22944–22957. doi: 10.1364/OE.18.022944. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...