Comparative study of Er3+-doped Ga-Ge-Sb-S thin films fabricated by sputtering and pulsed laser deposition
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
32409661
PubMed Central
PMC7224381
DOI
10.1038/s41598-020-64092-3
PII: 10.1038/s41598-020-64092-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Despite the renewed interest in rare earth-doped chalcogenide glasses lying mainly in mid-infrared applications, a few comprehensive studies so far have presented the photoluminescence of amorphous chalcogenide films from visible to mid-infrared. This work reports the fabrication of luminescent quaternary sulfide thin films using radio-frequency sputtering and pulsed laser deposition, and the characterization of their chemical composition, morphology, structure, refractive index and Er3+ photoluminescence. The study of Er3+ 4I13/2 level lifetimes enables developing suitable deposition parameters; the dependency of composition, structural and spectroscopic properties on deposition parameters provides a way to tailor the RE-doped thin film properties. The surface roughness is very low for both deposition methods, ensuring reasonable propagation optical losses. The effects of annealing on the sulfide films spectroscopy and lifetimes were assessed. PLD appears consistent composition-wise, and largely independent of the deposition conditions, but radiofrequency magnetron sputtering seems to be more versatile, as one may tailor the film properties through deposition parameters manipulation. The luminescence via rare earth-doped chalcogenide waveguiding micro-structures might find easy-to-use applications concerning telecommunications or on-chip optical sensors for which luminescent sources or amplifiers operating at different wavelengths are required.
Centre d'Optique Photonique et Laser 2375 rue de la Terrasse Université Laval Québec Qc Canada
CIMAP UMR CNRS 6252 Université de Caen Normandie 14050 Caen France
Zobrazit více v PubMed
Singh V, et al. Mid-infrared materials and devices on a Si platform for optical sensing. Sci. Technol. Adv. Mater. 2014;15:014603. doi: 10.1088/1468-6996/15/1/014603. PubMed DOI PMC
Lee BG, et al. Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy. Appl. Phys. Lett. 2007;91:231101. doi: 10.1063/1.2816909. DOI
Dettenrieder C, Raichlin Y, Katzir A, Mizaikoff B. Toward the Required Detection Limits for Volatile Organic Constituents in Marine Environments with Infrared Evanescent Field Chemical Sensors. Sensors. 2019;19(17):3644. doi: 10.3390/s19173644. PubMed DOI PMC
Shaw LB, Cole B, Thielen PA, Sanghera JS, Aggarwal ID. Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber. IEEE J. Quantum Electron. 2001;37(9):1127–1137. doi: 10.1109/3.945317. DOI
Schweizer T, Samson BN, Moore RC, Hewak DW, Payne DN. Rare-earth doped chalcogenide glass fibre laser. Electron. Lett. 1997;33(5):414–416. doi: 10.1049/el:19970270. DOI
Park BJ, et al. Dy3+ doped Ge–Ga–Sb–Se glasses and optical fibers for the mid-IR gain media. J. Ceram. Soc. Jpn. 2008;116(1358):1087–1091. doi: 10.2109/jcersj2.116.1087. DOI
Eggleton BJ, Luther-Davies B, Richardson K. Chalcogenide photonics. Nature Photonics. 2011;5:141–148. doi: 10.1038/nphoton.2011.309. DOI
Pelusi MD, et al. Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical. Signal Processing. IEEE J. Sel. Top. Quant. 2008;14:529–539. doi: 10.1109/JSTQE.2008.918669. DOI
Guignard M, et al. Chalcogenide Glasses Based on Germanium Disulfide for Second Harmonic Generation. Adv. Funct. Mater. 2007;17:3284–3294. doi: 10.1002/adfm.200700047. DOI
Verger F, et al. RF sputtered amorphous chalcogenide thin films for surface enhanced infrared absorption spectroscopy. Opt. Mater. Express. 2013;3(12):2112–2131. doi: 10.1364/OME.3.002112. DOI
Baudet E, et al. Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater. Adv. Device Mater. 2017;3(2):23–29. doi: 10.1080/20550308.2017.1338211. DOI
Baudet E, et al. Experimental design approach for deposition optimization of RF sputtered chalcogenide thin films devoted to environmental optical sensors. Sci. Rep. 2017;7:3500. doi: 10.1038/s41598-017-03678-w. PubMed DOI PMC
Bouška M, et al. Pulsed laser deposited GeTe-rich GeTe-Sb2Te3 thin films. Sci. Rep. 2016;6:26552. doi: 10.1038/srep26552. PubMed DOI PMC
Seddon AB. Mid-infrared (IR) – A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Phys. Status Solidi B. 2013;250(5):1020–1027. doi: 10.1002/pssb.201248524. DOI
Jin T, Zhou J, Lin H-YG, Lin PT. Mid-Infrared Chalcogenide Waveguides for Real-Time and Nondestructive Volatile Organic Compound Detection. Anal. Chem. 2019;91(1):817–822. doi: 10.1021/acs.analchem.8b03004. PubMed DOI
Han Z, et al. On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors. Appl. Phys. Lett. 2016;109(7):071111. doi: 10.1063/1.4961532. DOI
Nazabal V, et al. Luminescence at 2.8 μm: Er3+-doped chalcogenide micro-waveguide. Opt. Mater. 2016;58:390–397. doi: 10.1016/j.optmat.2016.06.009. DOI
Ramachandran S, Bishop SG. Excitation of Er3+ emission by host glass absorption in sputtered films of Er-doped Ge10As40Se25S25 glass. Appl. Phys. Lett. 1998;73:3196. doi: 10.1063/1.122716. DOI
Frantz JA, Shaw LB, Sanghera JS, Aggarwal ID. Waveguide amplifiers in sputtered films of Er3+- doped gallium lanthanum sulfide glass. Opt. Express. 2006;14:1797–1803. doi: 10.1364/OE.14.001797. PubMed DOI
Vigreux-Bercovici C, Pradel A, Fuchs A, Fick J. Effect of annealing on the photoluminescence in sputtered films of Er-doped chalcogenide glasses. Phys. Chem. Glasses. 2006;47:162–166.
Imai T, Maeda K, Fujita M, Saito N. Photoluminescence properties of erbium-doped amorphous gallium-germanium-selenium films fabricated by RF sputtering. Phys. Status Solidi C. 2009;6(1):S106–S109. doi: 10.1002/pssc.200881300. DOI
Borisov EN, Smirnov VB, Tverjanovich A, Tveryanovich YS. Deposition of Er3+ doped chalcogenide glass films by excimer laser ablation. J. Non-Cryst. Solids. 2003;326:316–319. doi: 10.1016/S0022-3093(03)00421-6. DOI
Dwivedi PK, et al. Rare-earth doped chalcogenide thin films fabricated by pulsed laser deposition. Appl. Surf. Sci. 2005;248(1-4):376–380. doi: 10.1016/j.apsusc.2005.03.057. DOI
Nazabal V, et al. Optical waveguide based on amorphous Er3+-doped GeGaSbS(Se) pulsed laser deposited thin films. Thin Solid Films. 2010;518:4941–4947. doi: 10.1016/j.tsf.2010.03.030. DOI
Albarkaty KS, et al. Erbium-doped chalcogenide glass thin film on silicon using femtosecond pulsed laser with different deposition temperatures. Appl. Phys. A. 2019;125:1. doi: 10.1007/s00339-018-2286-x. DOI
Ivanova ZG, Koughia K, Tonchev D, Pivin JC, Kasap SO. Photoluminescence in Er-implanted amorphous Ge-S-Ga thin films. Journal of Optoelectronics and Advanced Materials. 2005;7:1271–1276.
Lyubin V, Klebanov M, Sfez B, Ashkinadze B. Photoluminescence and photodarkening effect in erbium-doped chalcogenide glassy films. Mater. Lett. 2004;58:1706–1708. doi: 10.1016/j.matlet.2003.11.029. DOI
Yan K, Vu K, Madden S. Internal gain in Er-doped As2S3 chalcogenide planar waveguides. Opt. Lett. 2015;40:796–799. doi: 10.1364/OL.40.000796. PubMed DOI
Bodiou L, et al. Mid-infrared guided photoluminescence from integrated Pr3+-doped selenide ridge waveguides. Opt. Mater. 2018;75:109–115. doi: 10.1016/j.optmat.2017.10.001. DOI
Ari J, et al. Co-doped Dy3+ and Pr3+ Ga5Ge20Sb10S65 fibers for mid-infrared broad emission. Opt. Lett. 2018;43(12):2893–2896. doi: 10.1364/OL.43.002893. PubMed DOI
Abdellaoui N, et al. Tb3+ doped Ga5Ge20Sb10Se65-xTex (x = 0-37.5) chalcogenide glasses and fibers for MWIR and LWIR emissions. Opt. Mater. Express. 2018;8(9):2887–2900. doi: 10.1364/OME.8.002887. DOI
Starecki F, et al. Dy3+ doped GaGeSbSe fiber long-wave infrared emission. J. Lumin. 2020;218:116853. doi: 10.1016/j.jlumin.2019.116853. DOI
Adam, J.-L., & Zhang, X. H. Chalcogenide Glasses: Preparation, properties and application (Woodhead Publishing series in Electronic and Optical Materials) p. 281 (2014).
Baudet E, et al. Structural analysis of RF sputtered Ge-Sb-Se thin films by Raman and X-ray photoelectron spectroscopies. J. Non-Cryst. Solids. 2016;444:64–72. doi: 10.1016/j.jnoncrysol.2016.04.017. DOI
Moizan V, et al. Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy. Opt. Mater. 2008;31:39–46. doi: 10.1016/j.optmat.2008.01.005. DOI
Jellison GE, Modine FA. Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 1996;69:2137–2137. doi: 10.1063/1.118155. DOI
Ferlauto AS, et al. Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics. J. Appl. Phys. 2002;92:2424–2436. doi: 10.1063/1.1497462. DOI
Halenkovič T, et al. Linear and nonlinear optical properties of co-sputtered Ge-Sb-Se amorphous thin films. Opt. Lett. 2020;45(6):1523–1526. doi: 10.1364/OL.386775. PubMed DOI