Effects of summer weather and heatwaves on wild boar activity

. 2025 Jul ; 12 (7) : 242208. [epub] 20250723

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40708669

Climate change threatens wildlife species, negatively affecting their fitness through environmental change, such as through increased severity of droughts and summer heatwaves. Wild boar (Sus scrofa), a species with limited physiological thermoregulation abilities, is potentially vulnerable to high temperatures during summer. Yet little is known about the behavioural reactions of this species to heat stress. Detailed understanding of wild boar behavioural adaptations to their environment might help understand their future population growth and change in the geographical range. We used multisensory collars on 24 individual wild boars in the Czech Republic, calculating the dynamic body acceleration as a proxy for energy expenditure to detect activity changes in response to high temperatures on two temporal scales (daily and seasonal) and during heatwaves. Our results revealed that overall, under higher temperatures, wild boars reduce their activity, unless it rained. Heatwave duration did not affect wild boar activity. We show that wild boars adapt their activity to weather conditions and highlight the importance of sufficient precipitation for thermoregulation in this species. This suggests that studies about climate change impacts on wildlife behaviour should consider not only rising temperatures but also shifts in rainfall patterns. Additionally, this research shows the potential of remote-sensing technologies to monitor wildlife behaviour, particularly in challenging observational scenarios, offering valuable insights into the behavioural responses of wildlife in the face of a changing climate.

Zobrazit více v PubMed

Meehl GA, Tebaldi C. 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997. ( 10.1126/science.1098704) PubMed DOI

IPCC . 2023. Summary for policymakers. Climate change 2023: synthesis report. Contribution of Working Groups I, II and III to the sixth assessment report of the Intergovernmental Panel on Climate Change. IPCC. ( 10.59327/IPCC/AR6-9789291691647) DOI

Huey RB, Kearney MR, Krockenberger A, Holtum JAM, Jess M, Williams SE. 2012. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Phil. Trans. R. Soc. B Biol. Sci. 367, 1665–1679. ( 10.1098/rstb.2012.0005) PubMed DOI PMC

Wong BBM, Candolin U. 2015. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673. ( 10.1093/beheco/aru183) DOI

Frauendorf M, Gethöffer F, Siebert U, Keuling O. 2016. The influence of environmental and physiological factors on the litter size of wild boar (Sus scrofa) in an agriculture dominated area in Germany. Sci. Total Environ. 541, 877–882. ( 10.1016/j.scitotenv.2015.09.128) PubMed DOI

Ballari SA, Barrios-García MN. 2014. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mammal Rev 44, 124–134. ( 10.1111/mam.12015) DOI

Briedermann L. 2009. Schwarzwild, 2nd edn. Stuttgart, Germany: VEB Deutscher Landwirtschaftsverlag.

Podgórski T, Baś G, Jędrzejewska B, Sönnichsen L, Śnieżko S, Jędrzejewski W, Okarma H. 2013. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. J. Mammal. 94, 109–119. ( 10.1644/12-mamm-a-038.1) DOI

Sales LP, Ribeiro BR, Hayward MW, Paglia A, Passamani M, Loyola R. 2017. Niche conservatism and the invasive potential of the wild boar. J. Anim. Ecol. 86, 1214–1223. ( 10.1111/1365-2656.12721) PubMed DOI

Vetter SG, Ruf T, Bieber C, Arnold W. 2015. What is a mild winter? Regional differences in within-species responses to climate change. PLoS One 10, e0132178. ( 10.1371/journal.pone.0132178) PubMed DOI PMC

Melis C, Szafrańska PA, Jędrzejewska B, Bartoń K. 2006. Biogeographical variation in the population density of wild boar (Sus scrofa) in western Eurasia. J. Biogeogr. 33, 803–811. ( 10.1111/j.1365-2699.2006.01434.x) DOI

Borowik T, Cornulier T, Jędrzejewska B. 2013. Environmental factors shaping ungulate abundances in Poland. Acta Theriol. 58, 403–413. ( 10.1007/s13364-013-0153-x) PubMed DOI PMC

Geisser H, Reyer HU. 2005. The influence of food and temperature on population density of wild boar Sus scrofa in the Thurgau (Switzerland). J. Zool. 267, 89–96. ( 10.1017/S095283690500734X) DOI

Vetter SG, Puskas Z, Bieber C, Ruf T. 2020. How climate change and wildlife management affect population structure in wild boars. Sci. Rep. 10, 1–10. ( 10.1038/s41598-020-64216-9) PubMed DOI PMC

Touzot L, Schermer É, Venner S, Delzon S, Rousset C, Baubet É, Gaillard J, Gamelon M. 2020. How does increasing mast seeding frequency affect population dynamics of seed consumers? Wild boar as a case study. Ecol. Appl. 30, 2134. ( 10.1002/eap.2134) PubMed DOI

Massei G, et al. 2015. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag. Sci. 71, 492–500. ( 10.1002/ps.3965) PubMed DOI

Markov N, et al. 2022. The wild boar Sus scrofa in northern Eurasia: a review of range expansion history, current distribution, factors affecting the northern distributional limit, and management strategies. Mamm. Rev. 52, 519–537. ( 10.1111/mam.12301) DOI

Ruf T, Vetter SG, Painer-Gigler J, Stalder G, Bieber C. 2023. Thermoregulation in the wild boar (Sus scrofa). J. Comp. Physiol. B 193, 689–697. ( 10.1007/s00360-023-01512-6) PubMed DOI PMC

Collier RJ, Baumgard LH, Zimbelman RB, Xiao Y. 2019. Heat stress: physiology of acclimation and adaptation. Anim. Front. 9, 12–19. ( 10.1093/af/vfy031) PubMed DOI PMC

Collier RJ, Gebremedhin KG. 2015. Thermal biology of domestic animals. Annu. Rev. Anim. Biosci. 3, 513–532. ( 10.1146/annurev-animal-022114-110659) PubMed DOI

Mayorga EJ, Renaudeau D, Ramirez BC, Ross JW, Baumgard LH. 2019. Heat stress adaptations in pigs. Anim. Front. 9, 54–61. ( 10.1093/af/vfy035) PubMed DOI PMC

Cross AJ, Brown-Brandl TM, Keel BN, Cassady JP, Rohrer GA. 2020. Feeding behavior of grow-finish swine and the impacts of heat stress. Transl. Anim. Sci. 4, 986–992. ( 10.1093/tas/txaa023) PubMed DOI PMC

Huynh TTT, Aarnink AJA, Gerrits WJJ, Heetkamp MJH, Canh TT, Spoolder HAM, Kemp B, Verstegen MWA. 2005. Thermal behaviour of growing pigs in response to high temperature and humidity. Appl. Anim. Behav. Sci. 91, 1–16. ( 10.1016/j.applanim.2004.10.020) DOI

Olsen AW, Dybkjær L, Simonsen HB. 2001. Behaviour of growing pigs kept in pens with outdoor runs. Livest. Prod. Sci. 69, 265–278. ( 10.1016/s0301-6226(01)00173-7) DOI

Olczak K, Nowicki J, Klocek C. 2015. Pig behaviour in relation to weather conditions – a review. Ann. Anim. Sci. 15, 601–610. ( 10.1515/aoas-2015-0024) DOI

Street GM, Rodgers AR, Fryxell JM. 2015. Mid-day temperature variation influences seasonal habitat selection by moose. J. Wildl. Manag. 79, 505–512. ( 10.1002/jwmg.859) DOI

Semenzato P, Cagnacci F, Ossi F, Eccel E, Morellet N, Hewison AJM, Sturaro E, Ramanzin M. 2021. Behavioural heat‐stress compensation in a cold‐adapted ungulate: forage‐mediated responses to warming Alpine summers. Ecol. Lett. 24, 1556–1568. ( 10.1111/ele.13750) PubMed DOI PMC

Berry PE, Dammhahn M, Blaum N. 2023. Keeping cool on hot days: activity responses of African antelope to heat extremes. Front. Ecol. Evol. 11, 1172303. ( 10.3389/fevo.2023.1172303) DOI

Dussault C, Oullet JP, Courtois R, Huot J, Breton L, Larochelle J. 2016. Behavioural responses of moose to thermal conditions in the boreal forest. Écoscience 11, 321–328. ( 10.1080/11956860.2004.11682839) DOI

Aublet JF, Festa-Bianchet M, Bergero D, Bassano B. 2009. Temperature constraints on foraging behaviour of male Alpine ibex (Capra ibex) in summer. Oecologia 159, 237–247. ( 10.1007/s00442-008-1198-4) PubMed DOI

Fattorini N, Brunetti C, Baruzzi C, Chiatante G, Lovari S, Ferretti F. 2019. Temporal variation in foraging activity and grouping patterns in a mountain-dwelling herbivore: environmental and endogenous drivers. Behav. Process. 167, 103909. ( 10.1016/j.beproc.2019.103909) PubMed DOI

Maloney SK, Moss G, Cartmell T, Mitchell D. 2005. Alteration in diel activity patterns as a thermoregulatory strategy in black wildebeest (Connochaetes gnou). J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol 191, 1055–1064. ( 10.1007/s00359-005-0030-4) PubMed DOI

Mysterud A. 1996. Bed‐site selection by adult roe deer Capreolus capreolus in southern Norway during summer. Wildlife Biol. 2, 101–106. ( 10.2981/wlb.1996.038) DOI

Verzuh TL, Hall LE, Cufaude T, Knox L, Class C, Monteith KL. 2021. Behavioural flexibility in a heat-sensitive endotherm: the role of bed sites as thermal refuges. Anim. Behav. 178, 77–86. ( 10.1016/j.anbehav.2021.05.020) DOI

Kay SL, et al. 2017. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov. Ecol. 5, 1–15. ( 10.1186/s40462-017-0105-1) PubMed DOI PMC

Johann F, Handschuh M, Linderoth P, Heurich M, Dormann CF, Arnold J. 2020. Variability of daily space use in wild boar Sus scrofa. Wildlife Biol. 2020. ( 10.2981/wlb.00609) DOI

Clontz LM, Pepin KM, VerCauteren KC, Beasley JC. 2022. Influence of biotic and abiotic factors on home range size and shape of invasive wild pigs (Sus scrofa). Pest Manag. Sci. 78, 914–928. ( 10.1002/ps.6701) PubMed DOI

Lemel J, Truvé J, Söderberg B. 2000. Variation in ranging and activity behaviour of European wild boar Sus scrofa in Sweden. Wildl. Biol O13, 29–36. ( 10.2981/wlb.2003.061) DOI

Johann F, Handschuh M, Linderoth P, Dormann CF, Arnold J. 2020. Adaptation of wild boar (Sus scrofa) activity in a human-dominated landscape. BMC Ecol. 20, 1–14. ( 10.1186/s12898-019-0271-7) PubMed DOI PMC

Brivio F, Grignolio S, Brogi R, Benazzi M, Bertolucci C, Apollonio M. 2017. An analysis of intrinsic and extrinsic factors affecting the activity of a nocturnal species: the wild boar. Mamm. Biol. 84, 73–81. ( 10.1016/j.mambio.2017.01.007) DOI

Cagnacci F, Boitani L, Powell RA, Boyce MS. 2010. Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philos. Trans. R. Soc. B 365, 2157–2162. ( 10.1098/rstb.2010.0107) PubMed DOI PMC

Wilmers CC, Nickel B, Bryce CM, Smith JA, Wheat RE, Yovovich V. 2015. The golden age of bio-logging: how animal-borne sensors are advancing the frontiers of ecology. Ecology 96, 1741–1753. ( 10.1890/14-1401.1) PubMed DOI

Painter MS, et al. 2024. Development of a multisensor biologging collar and analytical techniques to describe high-resolution spatial behavior in free-ranging terrestrial mammals. Ecol. Evol. 14, e70264. ( 10.1002/ece3.70264) PubMed DOI PMC

Beaulieu M, Masilkova M. 2024. Plugging biologging into animal welfare: an opportunity for advancing wild animal welfare science. Methods Ecol. Evol. 15, 2172–2188. ( 10.1111/2041-210X.14441) DOI

Hills AP, Mokhtar N, Byrne NM. 2014. Assessment of physical activity and energy expenditure: an overview of objective measures. Front. Nutr. 1, 5. ( 10.3389/fnut.2014.00005) PubMed DOI PMC

Dale D, Welk GJ, Matthews CE. 2002. Methods for assessing physical activity assessments. In Physical activity assessments for health-related research (ed. Welk GJ), pp. 19–33. Champaign, IL: Human Kinetics.

Qasem L, Cardew A, Wilson A, Griffiths I, Halsey LG, Shepard ELC, Gleiss AC, Wilson R. 2012. Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector? PLoS One 7, e31187. ( 10.1371/journal.pone.0031187) PubMed DOI PMC

Wilson RP, et al. 2020. Estimates for energy expenditure in free‐living animals using acceleration proxies: a reappraisal. J. Anim. Ecol. 89, 161–172. ( 10.1111/1365-2656.13040) PubMed DOI PMC

Morelle K, et al. 2023. Accelerometer-based detection of African swine fever infection in wild boar. Proc. R. Soc. B 290, 20231396. ( 10.1098/rspb.2023.1396) PubMed DOI PMC

Zámyslický P, Suchá K, Daňhelka M. 2017. 7. National communication of the Czech Republic to the UNFCCC. Ministry of the Environment of the Czech Republic. See https://unfccc.int/sites/default/files/resource/17589243_Czech%20Republic-NC7-BR3-1-NC7_BR3_CZE.pdf.

Czech Hydrometeorological Institute . 2024. Territorial air temperature. See https://www.chmi.cz/historicka-data/pocasi/uzemni-teploty?l=en# (accessed 13 May 2024).

Olejarz A, Faltusová M, Börger L, Güldenpfennig J, Jarský V, Ježek M, Mortlock E, Silovský V, Podgórski T. 2023. Worse sleep and increased energy expenditure yet no movement changes in sub-urban wild boar experiencing an influx of human visitors (anthropulse) during the COVID-19 pandemic. Sci. Total Environ. 879, 163106. ( 10.1016/j.scitotenv.2023.163106) PubMed DOI PMC

Fenati M, Monaco A, Guberti V. 2008. Efficiency and safety of xylazine and tiletamine/zolazepam to immobilize captured wild boars (Sus scrofa L. 1758): analysis of field results. Eur. J. Wildl. Res. 54, 269–274. ( 10.1007/s10344-007-0140-0) DOI

Wilson R, Shepard E, Liebsch N. 2008. Prying into the intimate details of animal lives: use of a daily diary on animals. Endanger. Species Res. 4, 123–137. ( 10.3354/esr00064) DOI

Mortlock E, Silovský V, Güldenpfennig J, Faltusová M, Olejarz A, Börger L, Ježek M, Jennings DJ, Capellini I. 2024. Sleep in the wild: the importance of individual effects and environmental conditions on sleep behaviour in wild boar. Proc. R. Soc. B 291, 20232115. ( 10.1098/rspb.2023.2115) PubMed DOI PMC

Krantz S. 2025. collapse: advanced and fast data transformation in R. See https://sebkrantz.github.io/collapse.

Lykhach A, Lykhach V, Mylostyvyi R, Barkar Y, Shpetny M, Izhboldina O. 2022. Influence of housing air temperature on the behavioural acts, physiological parameters, and performance responses of fattening pigs. J. Anim. Behav. Biometeorol. 10, 1–7. ( 10.31893/jabb.22026) DOI

Myer RO, Bucklin RA. 2001. Influence of hot-humid environment on growth performance and reproduction of swine. Univ. Fla. IFAS Ext 107, 1–8. https://api.semanticscholar.org/CorpusID:130979087

Signer J, Fieberg J, Avgar T. 2019. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890. ( 10.1002/ece3.4823) PubMed DOI PMC

Wood S. 2022. mgcv: mixed GAM computation vehicle with automatic smoothness estimation. See https://cran.r-project.org/web/packages/mgcv/mgcv.pdf.

Brooks ME, Kristensen K, Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Mächler M, Bolker BM. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400. ( 10.32614/rj-2017-066) DOI

Hartig F. 2022. DHARMa: residual diagnostics for hierarchical (multi-level / mixed) regression models, R package version 0.4.6. See https://cran.r-project.org/web//packages/DHARMa/vignettes/DHARMa.html.

Nakagawa S, Johnson PCD, Schielzeth H. 2017. The coefficient of determination R PubMed DOI PMC

Bracke MBM. 2011. Review of wallowing in pigs: description of the behaviour and its motivational basis. Appl. Anim. Behav. Sci. 132, 1–13. ( 10.1016/j.applanim.2011.01.002) DOI

Calosi M, Gabbrielli C, Lazzeri L, Fattorini N, Cesaretti G, Burrini L, Petrillo O, Ferretti F. 2024. Seasonal and ecological determinants of wild boar rooting on priority protected grasslands. Environ. Manag. 74, 268–281. ( 10.1007/s00267-024-01952-y) PubMed DOI PMC

Terrien J, Perret M, Aujard F. 2011. Behavioral thermoregulation in mammals: a review. Front. Biosci. 16, 1428–1444. ( 10.2741/3797) PubMed DOI

Bourgoin G, Garel M, Blanchard P, Dubray D, Maillard D, Gaillard JM. 2011. Daily responses of mouflon (Ovis gmelini musimon × Ovis sp.) activity to summer climatic conditions. Can. J. Zool. 89, 765–773. ( 10.1139/z11-046) DOI

Owen-Smith N. 1998. How high ambient temperature affects the daily activity and foraging time of a subtropical ungulate, the greater kudu (Tragelaphus strepsiceros). J. Zool. 246, 183–192. ( 10.1017/S0952836998010073) DOI

Keuling O, Stier N, Roth M. 2008. How does hunting influence activity and spatial usage in wild boar Sus scrofa L.? Eur. J. Wildl. Res. 54, 729–737. ( 10.1007/s10344-008-0204-9) DOI

Russo L, Massei G, Genov PV. 1997. Daily home range and activity of wild boar in a Mediterranean area free from hunting. Ethol. Ecol. Evol. 9, 287–294. ( 10.1080/08927014.1997.9522888) DOI

Gaudiano L, Pucciarelli L, Frassanito AG, Mori E, Morimando F, Silvestri FM, Sorino R, Viviano A, Corriero G. 2022. Spatio-temporal behaviour of female wild boar in an agro-forestry–pastoral landscape of Southern Italy. Mamm. Res 67, 163–172. ( 10.1007/s13364-022-00617-7) DOI

Thel L, Garel M, Marchand P, Bourgoin G, Loison A. 2024. Too hot or too disturbed? Temperatures more than hikers affect circadian activity of females in northern chamois. Anim. Behav. 210, 347–367. ( 10.1016/j.anbehav.2024.01.010) DOI

Brivio F, Apollonio M, Anderwald P, Filli F, Bassano B, Bertolucci C, Grignolio S. 2024. Seeking temporal refugia to heat stress: increasing nocturnal activity despite predation risk. Proc. R. Soc. B Biol. Sci. 291, 20231587. ( 10.1098/rspb.2023.1587) PubMed DOI PMC

Spitz F, Janeau G. 1990. Spatial strategies: an attempt to classify daily movements of wild boar. Acta Theriol. 35, 129–149. ( 10.4098/at.arch.90-14) DOI

Bidder OR, Soresina M, Shepard ELC, Halsey LG, Quintana F, Gómez-Laich A, Wilson RP. 2012. The need for speed: testing acceleration for estimating animal travel rates in terrestrial dead-reckoning systems. Zoology 115, 58–64. ( 10.1016/j.zool.2011.09.003) PubMed DOI

Leu ST, Quiring K, Leggett KEA, Griffith SC. 2021. Consistent behavioural responses to heatwaves provide body condition benefits in rangeland sheep. Appl. Anim. Behav. Sci. 234, 105204. ( 10.1016/j.applanim.2020.105204) DOI

Trondrud LM, Pigeon G, Król E, Albon S, Ropstad E, Kumpula J, Evans AL, Speakman JR, Loe LE. 2023. A summer heat wave reduced activity, heart rate, and autumn body mass in a cold-adapted ungulate. Physiol. Biochem. Zool. 96, 282–293. ( 10.1086/725363) PubMed DOI

Keuling O, Stier N, Roth M. 2009. Commuting, shifting or remaining? Mamm. Biol. 74, 145–152. ( 10.1016/j.mambio.2008.05.007) DOI

Popczyk B, Klich D, Nasiadka P, Sobczuk M, Olech W, Kociuba P, Gadkowski K, Purski L. 2022. Crop harvesting can affect habitat selection of wild boar (Sus scrofa). Sustainability 14, 14679. ( 10.3390/su142214679) DOI

Thurfjell H, Ball JP, Åhlén PA, Kornacher P, Dettki H, Sjöberg K. 2009. Habitat use and spatial patterns of wild boar Sus scrofa (L.): agricultural fields and edges. Eur. J. Wildl. Res. 55, 517–523. ( 10.1007/s10344-009-0268-1) DOI

Ruf T, Krämer J, Bieber C, Vetter SG. 2025. Classification of behaviour with low-frequency accelerometers in female wild boar. PLoS One 20, e0318928. ( 10.1371/journal.pone.0318928) PubMed DOI PMC

Buchholz R, Banusiewicz JD, Burgess S, Crocker-Buta S, Eveland L, Fuller L. 2019. Behavioural research priorities for the study of animal response to climate change. Anim. Behav. 150, 127–137. ( 10.1016/j.anbehav.2019.02.005) DOI

Güldenpfennig J, Fattorini N, Jezek M, Morelle K, Podgórski T. 2025. Data from: Effects of summer weather and heatwaves on wild boar activity. Dryad digital repository. ( 10.5061/dryad.5qfttdzh7) PubMed DOI PMC

Güldenpfennig J, Fattorini N, Jezek M, Morelle K, Podgórski T. 2025. Supplementary material from: Effects of summer weather and heatwaves on wild boar activity. FigShare. ( 10.6084/m9.figshare.c.7901691) PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Effects of summer weather and heatwaves on wild boar activity

. 2025 Jul ; 12 (7) : 242208. [epub] 20250723

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.7901691

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...