Effects of summer weather and heatwaves on wild boar activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40708669
PubMed Central
PMC12289194
DOI
10.1098/rsos.242208
PII: rsos242208
Knihovny.cz E-zdroje
- Klíčová slova
- Sus scrofa, behaviour, biologging, climate change, heat, telemetry,
- Publikační typ
- časopisecké články MeSH
Climate change threatens wildlife species, negatively affecting their fitness through environmental change, such as through increased severity of droughts and summer heatwaves. Wild boar (Sus scrofa), a species with limited physiological thermoregulation abilities, is potentially vulnerable to high temperatures during summer. Yet little is known about the behavioural reactions of this species to heat stress. Detailed understanding of wild boar behavioural adaptations to their environment might help understand their future population growth and change in the geographical range. We used multisensory collars on 24 individual wild boars in the Czech Republic, calculating the dynamic body acceleration as a proxy for energy expenditure to detect activity changes in response to high temperatures on two temporal scales (daily and seasonal) and during heatwaves. Our results revealed that overall, under higher temperatures, wild boars reduce their activity, unless it rained. Heatwave duration did not affect wild boar activity. We show that wild boars adapt their activity to weather conditions and highlight the importance of sufficient precipitation for thermoregulation in this species. This suggests that studies about climate change impacts on wildlife behaviour should consider not only rising temperatures but also shifts in rainfall patterns. Additionally, this research shows the potential of remote-sensing technologies to monitor wildlife behaviour, particularly in challenging observational scenarios, offering valuable insights into the behavioural responses of wildlife in the face of a changing climate.
Department of Life Sciences University of Siena Siena Italy
Department of Migration Max Planck Institute of Animal Behavior Radolfzell Germany
Mammal Research Institute Polish Academy of Sciences Białowieża Poland
Zobrazit více v PubMed
Meehl GA, Tebaldi C. 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997. ( 10.1126/science.1098704) PubMed DOI
IPCC . 2023. Summary for policymakers. Climate change 2023: synthesis report. Contribution of Working Groups I, II and III to the sixth assessment report of the Intergovernmental Panel on Climate Change. IPCC. ( 10.59327/IPCC/AR6-9789291691647) DOI
Huey RB, Kearney MR, Krockenberger A, Holtum JAM, Jess M, Williams SE. 2012. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Phil. Trans. R. Soc. B Biol. Sci. 367, 1665–1679. ( 10.1098/rstb.2012.0005) PubMed DOI PMC
Wong BBM, Candolin U. 2015. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673. ( 10.1093/beheco/aru183) DOI
Frauendorf M, Gethöffer F, Siebert U, Keuling O. 2016. The influence of environmental and physiological factors on the litter size of wild boar (Sus scrofa) in an agriculture dominated area in Germany. Sci. Total Environ. 541, 877–882. ( 10.1016/j.scitotenv.2015.09.128) PubMed DOI
Ballari SA, Barrios-García MN. 2014. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mammal Rev 44, 124–134. ( 10.1111/mam.12015) DOI
Briedermann L. 2009. Schwarzwild, 2nd edn. Stuttgart, Germany: VEB Deutscher Landwirtschaftsverlag.
Podgórski T, Baś G, Jędrzejewska B, Sönnichsen L, Śnieżko S, Jędrzejewski W, Okarma H. 2013. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. J. Mammal. 94, 109–119. ( 10.1644/12-mamm-a-038.1) DOI
Sales LP, Ribeiro BR, Hayward MW, Paglia A, Passamani M, Loyola R. 2017. Niche conservatism and the invasive potential of the wild boar. J. Anim. Ecol. 86, 1214–1223. ( 10.1111/1365-2656.12721) PubMed DOI
Vetter SG, Ruf T, Bieber C, Arnold W. 2015. What is a mild winter? Regional differences in within-species responses to climate change. PLoS One 10, e0132178. ( 10.1371/journal.pone.0132178) PubMed DOI PMC
Melis C, Szafrańska PA, Jędrzejewska B, Bartoń K. 2006. Biogeographical variation in the population density of wild boar (Sus scrofa) in western Eurasia. J. Biogeogr. 33, 803–811. ( 10.1111/j.1365-2699.2006.01434.x) DOI
Borowik T, Cornulier T, Jędrzejewska B. 2013. Environmental factors shaping ungulate abundances in Poland. Acta Theriol. 58, 403–413. ( 10.1007/s13364-013-0153-x) PubMed DOI PMC
Geisser H, Reyer HU. 2005. The influence of food and temperature on population density of wild boar Sus scrofa in the Thurgau (Switzerland). J. Zool. 267, 89–96. ( 10.1017/S095283690500734X) DOI
Vetter SG, Puskas Z, Bieber C, Ruf T. 2020. How climate change and wildlife management affect population structure in wild boars. Sci. Rep. 10, 1–10. ( 10.1038/s41598-020-64216-9) PubMed DOI PMC
Touzot L, Schermer É, Venner S, Delzon S, Rousset C, Baubet É, Gaillard J, Gamelon M. 2020. How does increasing mast seeding frequency affect population dynamics of seed consumers? Wild boar as a case study. Ecol. Appl. 30, 2134. ( 10.1002/eap.2134) PubMed DOI
Massei G, et al. 2015. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag. Sci. 71, 492–500. ( 10.1002/ps.3965) PubMed DOI
Markov N, et al. 2022. The wild boar Sus scrofa in northern Eurasia: a review of range expansion history, current distribution, factors affecting the northern distributional limit, and management strategies. Mamm. Rev. 52, 519–537. ( 10.1111/mam.12301) DOI
Ruf T, Vetter SG, Painer-Gigler J, Stalder G, Bieber C. 2023. Thermoregulation in the wild boar (Sus scrofa). J. Comp. Physiol. B 193, 689–697. ( 10.1007/s00360-023-01512-6) PubMed DOI PMC
Collier RJ, Baumgard LH, Zimbelman RB, Xiao Y. 2019. Heat stress: physiology of acclimation and adaptation. Anim. Front. 9, 12–19. ( 10.1093/af/vfy031) PubMed DOI PMC
Collier RJ, Gebremedhin KG. 2015. Thermal biology of domestic animals. Annu. Rev. Anim. Biosci. 3, 513–532. ( 10.1146/annurev-animal-022114-110659) PubMed DOI
Mayorga EJ, Renaudeau D, Ramirez BC, Ross JW, Baumgard LH. 2019. Heat stress adaptations in pigs. Anim. Front. 9, 54–61. ( 10.1093/af/vfy035) PubMed DOI PMC
Cross AJ, Brown-Brandl TM, Keel BN, Cassady JP, Rohrer GA. 2020. Feeding behavior of grow-finish swine and the impacts of heat stress. Transl. Anim. Sci. 4, 986–992. ( 10.1093/tas/txaa023) PubMed DOI PMC
Huynh TTT, Aarnink AJA, Gerrits WJJ, Heetkamp MJH, Canh TT, Spoolder HAM, Kemp B, Verstegen MWA. 2005. Thermal behaviour of growing pigs in response to high temperature and humidity. Appl. Anim. Behav. Sci. 91, 1–16. ( 10.1016/j.applanim.2004.10.020) DOI
Olsen AW, Dybkjær L, Simonsen HB. 2001. Behaviour of growing pigs kept in pens with outdoor runs. Livest. Prod. Sci. 69, 265–278. ( 10.1016/s0301-6226(01)00173-7) DOI
Olczak K, Nowicki J, Klocek C. 2015. Pig behaviour in relation to weather conditions – a review. Ann. Anim. Sci. 15, 601–610. ( 10.1515/aoas-2015-0024) DOI
Street GM, Rodgers AR, Fryxell JM. 2015. Mid-day temperature variation influences seasonal habitat selection by moose. J. Wildl. Manag. 79, 505–512. ( 10.1002/jwmg.859) DOI
Semenzato P, Cagnacci F, Ossi F, Eccel E, Morellet N, Hewison AJM, Sturaro E, Ramanzin M. 2021. Behavioural heat‐stress compensation in a cold‐adapted ungulate: forage‐mediated responses to warming Alpine summers. Ecol. Lett. 24, 1556–1568. ( 10.1111/ele.13750) PubMed DOI PMC
Berry PE, Dammhahn M, Blaum N. 2023. Keeping cool on hot days: activity responses of African antelope to heat extremes. Front. Ecol. Evol. 11, 1172303. ( 10.3389/fevo.2023.1172303) DOI
Dussault C, Oullet JP, Courtois R, Huot J, Breton L, Larochelle J. 2016. Behavioural responses of moose to thermal conditions in the boreal forest. Écoscience 11, 321–328. ( 10.1080/11956860.2004.11682839) DOI
Aublet JF, Festa-Bianchet M, Bergero D, Bassano B. 2009. Temperature constraints on foraging behaviour of male Alpine ibex (Capra ibex) in summer. Oecologia 159, 237–247. ( 10.1007/s00442-008-1198-4) PubMed DOI
Fattorini N, Brunetti C, Baruzzi C, Chiatante G, Lovari S, Ferretti F. 2019. Temporal variation in foraging activity and grouping patterns in a mountain-dwelling herbivore: environmental and endogenous drivers. Behav. Process. 167, 103909. ( 10.1016/j.beproc.2019.103909) PubMed DOI
Maloney SK, Moss G, Cartmell T, Mitchell D. 2005. Alteration in diel activity patterns as a thermoregulatory strategy in black wildebeest (Connochaetes gnou). J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol 191, 1055–1064. ( 10.1007/s00359-005-0030-4) PubMed DOI
Mysterud A. 1996. Bed‐site selection by adult roe deer Capreolus capreolus in southern Norway during summer. Wildlife Biol. 2, 101–106. ( 10.2981/wlb.1996.038) DOI
Verzuh TL, Hall LE, Cufaude T, Knox L, Class C, Monteith KL. 2021. Behavioural flexibility in a heat-sensitive endotherm: the role of bed sites as thermal refuges. Anim. Behav. 178, 77–86. ( 10.1016/j.anbehav.2021.05.020) DOI
Kay SL, et al. 2017. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov. Ecol. 5, 1–15. ( 10.1186/s40462-017-0105-1) PubMed DOI PMC
Johann F, Handschuh M, Linderoth P, Heurich M, Dormann CF, Arnold J. 2020. Variability of daily space use in wild boar Sus scrofa. Wildlife Biol. 2020. ( 10.2981/wlb.00609) DOI
Clontz LM, Pepin KM, VerCauteren KC, Beasley JC. 2022. Influence of biotic and abiotic factors on home range size and shape of invasive wild pigs (Sus scrofa). Pest Manag. Sci. 78, 914–928. ( 10.1002/ps.6701) PubMed DOI
Lemel J, Truvé J, Söderberg B. 2000. Variation in ranging and activity behaviour of European wild boar Sus scrofa in Sweden. Wildl. Biol O13, 29–36. ( 10.2981/wlb.2003.061) DOI
Johann F, Handschuh M, Linderoth P, Dormann CF, Arnold J. 2020. Adaptation of wild boar (Sus scrofa) activity in a human-dominated landscape. BMC Ecol. 20, 1–14. ( 10.1186/s12898-019-0271-7) PubMed DOI PMC
Brivio F, Grignolio S, Brogi R, Benazzi M, Bertolucci C, Apollonio M. 2017. An analysis of intrinsic and extrinsic factors affecting the activity of a nocturnal species: the wild boar. Mamm. Biol. 84, 73–81. ( 10.1016/j.mambio.2017.01.007) DOI
Cagnacci F, Boitani L, Powell RA, Boyce MS. 2010. Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philos. Trans. R. Soc. B 365, 2157–2162. ( 10.1098/rstb.2010.0107) PubMed DOI PMC
Wilmers CC, Nickel B, Bryce CM, Smith JA, Wheat RE, Yovovich V. 2015. The golden age of bio-logging: how animal-borne sensors are advancing the frontiers of ecology. Ecology 96, 1741–1753. ( 10.1890/14-1401.1) PubMed DOI
Painter MS, et al. 2024. Development of a multisensor biologging collar and analytical techniques to describe high-resolution spatial behavior in free-ranging terrestrial mammals. Ecol. Evol. 14, e70264. ( 10.1002/ece3.70264) PubMed DOI PMC
Beaulieu M, Masilkova M. 2024. Plugging biologging into animal welfare: an opportunity for advancing wild animal welfare science. Methods Ecol. Evol. 15, 2172–2188. ( 10.1111/2041-210X.14441) DOI
Hills AP, Mokhtar N, Byrne NM. 2014. Assessment of physical activity and energy expenditure: an overview of objective measures. Front. Nutr. 1, 5. ( 10.3389/fnut.2014.00005) PubMed DOI PMC
Dale D, Welk GJ, Matthews CE. 2002. Methods for assessing physical activity assessments. In Physical activity assessments for health-related research (ed. Welk GJ), pp. 19–33. Champaign, IL: Human Kinetics.
Qasem L, Cardew A, Wilson A, Griffiths I, Halsey LG, Shepard ELC, Gleiss AC, Wilson R. 2012. Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector? PLoS One 7, e31187. ( 10.1371/journal.pone.0031187) PubMed DOI PMC
Wilson RP, et al. 2020. Estimates for energy expenditure in free‐living animals using acceleration proxies: a reappraisal. J. Anim. Ecol. 89, 161–172. ( 10.1111/1365-2656.13040) PubMed DOI PMC
Morelle K, et al. 2023. Accelerometer-based detection of African swine fever infection in wild boar. Proc. R. Soc. B 290, 20231396. ( 10.1098/rspb.2023.1396) PubMed DOI PMC
Zámyslický P, Suchá K, Daňhelka M. 2017. 7. National communication of the Czech Republic to the UNFCCC. Ministry of the Environment of the Czech Republic. See https://unfccc.int/sites/default/files/resource/17589243_Czech%20Republic-NC7-BR3-1-NC7_BR3_CZE.pdf.
Czech Hydrometeorological Institute . 2024. Territorial air temperature. See https://www.chmi.cz/historicka-data/pocasi/uzemni-teploty?l=en# (accessed 13 May 2024).
Olejarz A, Faltusová M, Börger L, Güldenpfennig J, Jarský V, Ježek M, Mortlock E, Silovský V, Podgórski T. 2023. Worse sleep and increased energy expenditure yet no movement changes in sub-urban wild boar experiencing an influx of human visitors (anthropulse) during the COVID-19 pandemic. Sci. Total Environ. 879, 163106. ( 10.1016/j.scitotenv.2023.163106) PubMed DOI PMC
Fenati M, Monaco A, Guberti V. 2008. Efficiency and safety of xylazine and tiletamine/zolazepam to immobilize captured wild boars (Sus scrofa L. 1758): analysis of field results. Eur. J. Wildl. Res. 54, 269–274. ( 10.1007/s10344-007-0140-0) DOI
Wilson R, Shepard E, Liebsch N. 2008. Prying into the intimate details of animal lives: use of a daily diary on animals. Endanger. Species Res. 4, 123–137. ( 10.3354/esr00064) DOI
Mortlock E, Silovský V, Güldenpfennig J, Faltusová M, Olejarz A, Börger L, Ježek M, Jennings DJ, Capellini I. 2024. Sleep in the wild: the importance of individual effects and environmental conditions on sleep behaviour in wild boar. Proc. R. Soc. B 291, 20232115. ( 10.1098/rspb.2023.2115) PubMed DOI PMC
Krantz S. 2025. collapse: advanced and fast data transformation in R. See https://sebkrantz.github.io/collapse.
Lykhach A, Lykhach V, Mylostyvyi R, Barkar Y, Shpetny M, Izhboldina O. 2022. Influence of housing air temperature on the behavioural acts, physiological parameters, and performance responses of fattening pigs. J. Anim. Behav. Biometeorol. 10, 1–7. ( 10.31893/jabb.22026) DOI
Myer RO, Bucklin RA. 2001. Influence of hot-humid environment on growth performance and reproduction of swine. Univ. Fla. IFAS Ext 107, 1–8. https://api.semanticscholar.org/CorpusID:130979087
Signer J, Fieberg J, Avgar T. 2019. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890. ( 10.1002/ece3.4823) PubMed DOI PMC
Wood S. 2022. mgcv: mixed GAM computation vehicle with automatic smoothness estimation. See https://cran.r-project.org/web/packages/mgcv/mgcv.pdf.
Brooks ME, Kristensen K, Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Mächler M, Bolker BM. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400. ( 10.32614/rj-2017-066) DOI
Hartig F. 2022. DHARMa: residual diagnostics for hierarchical (multi-level / mixed) regression models, R package version 0.4.6. See https://cran.r-project.org/web//packages/DHARMa/vignettes/DHARMa.html.
Nakagawa S, Johnson PCD, Schielzeth H. 2017. The coefficient of determination R PubMed DOI PMC
Bracke MBM. 2011. Review of wallowing in pigs: description of the behaviour and its motivational basis. Appl. Anim. Behav. Sci. 132, 1–13. ( 10.1016/j.applanim.2011.01.002) DOI
Calosi M, Gabbrielli C, Lazzeri L, Fattorini N, Cesaretti G, Burrini L, Petrillo O, Ferretti F. 2024. Seasonal and ecological determinants of wild boar rooting on priority protected grasslands. Environ. Manag. 74, 268–281. ( 10.1007/s00267-024-01952-y) PubMed DOI PMC
Terrien J, Perret M, Aujard F. 2011. Behavioral thermoregulation in mammals: a review. Front. Biosci. 16, 1428–1444. ( 10.2741/3797) PubMed DOI
Bourgoin G, Garel M, Blanchard P, Dubray D, Maillard D, Gaillard JM. 2011. Daily responses of mouflon (Ovis gmelini musimon × Ovis sp.) activity to summer climatic conditions. Can. J. Zool. 89, 765–773. ( 10.1139/z11-046) DOI
Owen-Smith N. 1998. How high ambient temperature affects the daily activity and foraging time of a subtropical ungulate, the greater kudu (Tragelaphus strepsiceros). J. Zool. 246, 183–192. ( 10.1017/S0952836998010073) DOI
Keuling O, Stier N, Roth M. 2008. How does hunting influence activity and spatial usage in wild boar Sus scrofa L.? Eur. J. Wildl. Res. 54, 729–737. ( 10.1007/s10344-008-0204-9) DOI
Russo L, Massei G, Genov PV. 1997. Daily home range and activity of wild boar in a Mediterranean area free from hunting. Ethol. Ecol. Evol. 9, 287–294. ( 10.1080/08927014.1997.9522888) DOI
Gaudiano L, Pucciarelli L, Frassanito AG, Mori E, Morimando F, Silvestri FM, Sorino R, Viviano A, Corriero G. 2022. Spatio-temporal behaviour of female wild boar in an agro-forestry–pastoral landscape of Southern Italy. Mamm. Res 67, 163–172. ( 10.1007/s13364-022-00617-7) DOI
Thel L, Garel M, Marchand P, Bourgoin G, Loison A. 2024. Too hot or too disturbed? Temperatures more than hikers affect circadian activity of females in northern chamois. Anim. Behav. 210, 347–367. ( 10.1016/j.anbehav.2024.01.010) DOI
Brivio F, Apollonio M, Anderwald P, Filli F, Bassano B, Bertolucci C, Grignolio S. 2024. Seeking temporal refugia to heat stress: increasing nocturnal activity despite predation risk. Proc. R. Soc. B Biol. Sci. 291, 20231587. ( 10.1098/rspb.2023.1587) PubMed DOI PMC
Spitz F, Janeau G. 1990. Spatial strategies: an attempt to classify daily movements of wild boar. Acta Theriol. 35, 129–149. ( 10.4098/at.arch.90-14) DOI
Bidder OR, Soresina M, Shepard ELC, Halsey LG, Quintana F, Gómez-Laich A, Wilson RP. 2012. The need for speed: testing acceleration for estimating animal travel rates in terrestrial dead-reckoning systems. Zoology 115, 58–64. ( 10.1016/j.zool.2011.09.003) PubMed DOI
Leu ST, Quiring K, Leggett KEA, Griffith SC. 2021. Consistent behavioural responses to heatwaves provide body condition benefits in rangeland sheep. Appl. Anim. Behav. Sci. 234, 105204. ( 10.1016/j.applanim.2020.105204) DOI
Trondrud LM, Pigeon G, Król E, Albon S, Ropstad E, Kumpula J, Evans AL, Speakman JR, Loe LE. 2023. A summer heat wave reduced activity, heart rate, and autumn body mass in a cold-adapted ungulate. Physiol. Biochem. Zool. 96, 282–293. ( 10.1086/725363) PubMed DOI
Keuling O, Stier N, Roth M. 2009. Commuting, shifting or remaining? Mamm. Biol. 74, 145–152. ( 10.1016/j.mambio.2008.05.007) DOI
Popczyk B, Klich D, Nasiadka P, Sobczuk M, Olech W, Kociuba P, Gadkowski K, Purski L. 2022. Crop harvesting can affect habitat selection of wild boar (Sus scrofa). Sustainability 14, 14679. ( 10.3390/su142214679) DOI
Thurfjell H, Ball JP, Åhlén PA, Kornacher P, Dettki H, Sjöberg K. 2009. Habitat use and spatial patterns of wild boar Sus scrofa (L.): agricultural fields and edges. Eur. J. Wildl. Res. 55, 517–523. ( 10.1007/s10344-009-0268-1) DOI
Ruf T, Krämer J, Bieber C, Vetter SG. 2025. Classification of behaviour with low-frequency accelerometers in female wild boar. PLoS One 20, e0318928. ( 10.1371/journal.pone.0318928) PubMed DOI PMC
Buchholz R, Banusiewicz JD, Burgess S, Crocker-Buta S, Eveland L, Fuller L. 2019. Behavioural research priorities for the study of animal response to climate change. Anim. Behav. 150, 127–137. ( 10.1016/j.anbehav.2019.02.005) DOI
Güldenpfennig J, Fattorini N, Jezek M, Morelle K, Podgórski T. 2025. Data from: Effects of summer weather and heatwaves on wild boar activity. Dryad digital repository. ( 10.5061/dryad.5qfttdzh7) PubMed DOI PMC
Güldenpfennig J, Fattorini N, Jezek M, Morelle K, Podgórski T. 2025. Supplementary material from: Effects of summer weather and heatwaves on wild boar activity. FigShare. ( 10.6084/m9.figshare.c.7901691) PubMed DOI PMC
Effects of summer weather and heatwaves on wild boar activity
figshare
10.6084/m9.figshare.c.7901691