Experimental Measurement of Deposition Chloride Ions in the Vicinity of Road Cut
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA22-19812S
Grant Agency of the Czech Republic
SP2022/37
Technical University of Ostrava
PubMed
36614428
PubMed Central
PMC9821097
DOI
10.3390/ma16010088
PII: ma16010088
Knihovny.cz E-zdroje
- Klíčová slova
- bridge, chloride, corrosion coupon, dry plate method, reinforce concrete, road, rust, steel, wet candle method,
- Publikační typ
- časopisecké články MeSH
Chloride ions are nowadays the main cause of the degradation of steel and reinforce concrete construction in the vicinity of the road. On the other hand, chloride ions, usually in the form of de-icing salts or brine, are very important for safe winter traffic on the roads. This creates a slightly schizophrenic situation where it is necessary to ensure safe traffic in the winter period and at the same time to affect the service life of the structure as little as possible. The effect of the roadway on chloride deposition is a long-studied, but still imprecisely understood, part of the effect of chloride ions on structures in the vicinity of the roadway. This paper discusses the experimental measurement of chloride deposition in the vicinity of the I/11 road in the Czech Republic by dry plate method, wet candle method and corrosion coupons. Statistical analysis of correlation and regression is performed on the results of measurements by wet candle and horizontal dry plate methods. The methods are interdependent. A detailed analysis of the surface and chemical properties of the corrosion products is performed on the corrosion coupons. Using the corrosion loss, the environmental category C2 is determined. Observation of the microclimate in the vicinity of the roads gives to engineers a basis for the correct design of structures around the roads. The conclusions of the experimental measurements are intended to help engineers to design a structure that is safe, serviceable and sufficiently resistant to chloride ions within its service life.
Zobrazit více v PubMed
Roberge P.R. Handbook of Corrosion Engineering. McGraw Hill; New York, NY, USA: 2012.
Cáceres L., Vargas T., Herrera L. Influence of pitting and iron oxide formation during corrosion of carbon steel in unbuffered NaCl solution. Corros. Sci. 2009;51:971–978. doi: 10.1016/j.corsci.2009.02.021. DOI
Talebian M., Raeissi K., Atapour M., Fernández-Pérez B., Betancor-Abreu A., Llorente I., Fajardo S., Salarvand Z., Meghdadi S., Amirnasr M., et al. Pitting corrosion inhibition of 304 stainless steel in NaCl solution by three newly synthesized carboxylic Schiff bases. Corros. Sci. 2019;160:108130. doi: 10.1016/j.corsci.2019.108130. DOI
Zheng W., Yan X., Xiong S., Wang G., Li G. Pitting corrosion behavior of cerium treated HSLA steel induced by sulfide inclusions in 3.5 wt% NaCl solution. J. Rare Earths. 2021;39:348–356. doi: 10.1016/j.jre.2020.06.015. DOI
Zhang Y., Zheng K., Zhu J., Lei M., Feng X. Research on corrosion and fatigue performance of weathering steel and High-Performance steel for bridges. Constr. Build. Mater. 2021;289:123108. doi: 10.1016/j.conbuildmat.2021.123108. DOI
Li P., Du M. Effect of chloride ion content on pitting corrosion of dispersion-strengthened-high-strength steel. Corros. Commun. 2022;7:23–34. doi: 10.1016/j.corcom.2022.03.005. DOI
Abbas Y., Pargar F., Koleva D.A., van Breugel K., Olthuis W., Berg A.V.D. Non-destructive measurement of chloride ions concentration in concrete–A comparative analysis of limitations and prospects. Constr. Build. Mater. 2018;174:376–387. doi: 10.1016/j.conbuildmat.2018.04.135. DOI
Guoping L., Fangjian H., Yongxian W. Chloride ion penetration in stressed concrete. J. Mater. Civ. Eng. 2011;23:1145–1153. doi: 10.1061/(ASCE)MT.1943-5533.0000281. DOI
Yuan Q., Audenaert K., Shi C., De Schutter G. Concrete Repair, Rehabilitation and Retrofitting II. CRC Press; Boca Raton, FL, USA: 2008. Effect of temperature on transport of chloride ions in concrete; pp. 177–178.
Ahn B.-H., Lee S.-J., Park C.-G. Chloride Ion Diffusion and Durability Characteristics of Rural-Road Concrete Pavement of South Korea Using Air-Cooled Slag Aggregates. Appl. Sci. 2021;11:8215. doi: 10.3390/app11178215. DOI
Ma Z., Shen J., Wang C., Wu H. Characterization of sustainable mortar containing high-quality recycled manufactured sand crushed from recycled coarse aggregate. Cem. Concr. Compos. 2022;132:104629. doi: 10.1016/j.cemconcomp.2022.104629. DOI
Nicula L.M., Corbu O., Iliescu M., Sandu A.V., Hegyi A. Study on the Durability of Road Concrete with Blast Furnace Slag Affected by the Corrosion Initiated by Chloride. Adv. Civ. Eng. 2021;2021:8851005. doi: 10.1155/2021/8851005. DOI
Snodgrass J.W., Moore J., Lev S.M., Casey R.E., Ownby D.R., Flora R.F., Izzo G. Influence of modern stormwater management practices on transport of road salt to surface waters. Environ. Sci. Technol. 2017;51:4165–4172. doi: 10.1021/acs.est.6b03107. PubMed DOI
Aghazadeh N., Nojavan M., Mogaddam A.A. Effects of road-deicing salt (NaCl) and saline water on water quality in the Urmia area, northwest of Iran. Arab. J. Geosci. 2012;5:565–570. doi: 10.1007/s12517-010-0210-6. DOI
Křivý V., Kubzová M., Kreislová K., Urban V. Characterization of Corrosion Products on Weathering Steel Bridges Influenced by Chloride Deposition. Metals. 2017;7:336. doi: 10.3390/met7090336. DOI
Kreislova K., Knotkova D. Korozní Agresivita Atmosfér a Metody Predikce Atmosférické Koroze. 2nd ed. SVUOM Ltd.; Praha, Czech Republic: 2014.
Soleimanifar P. Effect of Road Salt Applications on Human and Ecological Health: A Risk Assessment and Risk Management for Prospective Policy Options. Johns Hopkins Krieger School of Arts and Sciences; Hethersda, MD, USA: 2019.
Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Measurement of Environmental Parameters Affecting Corrosivity of Atmospheres. International Organization for Standardization; Geneva, Switzerland: 2012.
Kubzová M. Dissertation Thesis. VSB-TU Ostrava; Ostrava, Czech Republic: 2020. Study of Corrosion Processes on Steel Structures Affected by Chloride Deposition. (In Czech)
EWAC spol. s r.o. Planá 2022. [(accessed on 13 November 2022)]. Available online: https://ewac.cz/catalog/226.
Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Determination of Corrosion Rate of Standard Specimens for the Evaluation of Corrosivity. International Organization for Standardization; Geneva, Switzerland: 2012.
Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Classification, Determination and Estimation. International Organization for Standardization; Geneva, Switzerland: 2012.
ČHMÚ Portal: Historical data: Weather: Monthly data: Monthly Data According to z. 123/1998 Sb. [(accessed on 13 November 2022)]. Available online: https://www.chmi.cz/historicka-data/pocasi/mesicni-data/mesicni-data-dle-z.-123-1998-Sb#. (In Czech)
Melchers R.E. A new interpretation of the corrosion loss processes for weathering steels in marine atmospheres. Corros. Sci. 2008;50:3446–3454. doi: 10.1016/j.corsci.2008.09.003. DOI
JASP—A Fresh Way to Do Statistics. [(accessed on 13 November 2022)]. Available online: https://jasp-stats.org.
Sharma A.K. Textbook of Correlations and Regression. Discovery Publishing House; New Delhi, India: 2005.
Prion S., Haerling K.A. Making sense of methods and measurement: Spearman-rho ranked-order correlation coefficient. Clin. Simul. Nurs. 2014;10:535–536. doi: 10.1016/j.ecns.2014.07.005. DOI
Riazoshams H., Midi H., Ghilagaber G. Wiley and Sons; Hoboken, NJ, USA: 2018. Robust Nonlinear Regression.
Leatherbarrow R.J. Using linear and non-linear regression to fit biochemical data. Trends Biochem. Sci. 1990;15:455–458. doi: 10.1016/0968-0004(90)90295-M. PubMed DOI
Spiess A.N., Neumeyer N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. BMC Pharmacol. 2010;10:6. doi: 10.1186/1471-2210-10-6. PubMed DOI PMC
What Is CIE 1976 Lab Color Space?—Konica Minolta Color, Light, and Display Measuring Instruments. [(accessed on 13 November 2022)]. Available online: https://sensing.konicaminolta.asia/what-is-cie-1976-lab-color-space/
Guo X., Zhu J., Kang J., Duan M., Wang Y. Rust layer adhesion capability and corrosion behavior of weathering steel under tension during initial stages of simulated marine atmospheric corrosion. Constr. Build. Mater. 2020;234:117393. doi: 10.1016/j.conbuildmat.2019.117393. DOI
Corrosion of Metals and Alloys—Removal of Corrosion Products from Corrosion Test Specimens. International Organization for Standardization; Geneva, Switzerland: 2021.
Knotkova D., Kucera V., Dean S.W., Botschek P. Classification of the corrosivity of the atmosphere—Standardized classification system and approach for adjustment. ASTM Spec. Tech. Publ. 2002;1421:109–126.
Operation of Automated Monitoring Stations and Mobile Measuring Equipment Monitoring Air Quality in the Moravian-Silesian Region. [(accessed on 13 November 2022)]. Available online: https://air.zuova.cz/ovzdusi/file/get/35/IMS-MSK_Zaverecna_zprava_2021.pdf. (In Czech)
Croiset E., Thambimuthu K.V. NOx and SO2 emissions from O2/CO2 recycle coal combustion. Fuel. 2001;80:2117–2121. doi: 10.1016/S0016-2361(00)00197-6. DOI
Xu X., Chen C., Qi H., He R., You C., Xiang G. Development of coal combustion pollution control for SO2 and NOx in China. Fuel Process. Technol. 2000;62:153–160. doi: 10.1016/S0378-3820(99)00116-2. DOI
Kamimura T., Hara S., Miuyki H., Yamashita M., Uchida M. Composition and protective ability of rust layer formed on weathering steel exposed to various environments. Corros. Sci. 2006;49:2799–2812. doi: 10.1016/j.corsci.2005.10.004. DOI
Hara S., Kamimura T., Miyuki H., Yamashita M. Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge. Corros. Sci. 2007;49:1131–1142. doi: 10.1016/j.corsci.2006.06.016. DOI
Rémazeilles C., Refait P. On the formation of β-FeOOH (akaganéite) in chloride-containing environments. Corros. Sci. 2007;49:844–857. doi: 10.1016/j.corsci.2006.06.003. DOI
Veneranda M., Aramendia J., Bellot-Gurlet L., Colomban P., Castro K., Madariaga J.M. FTIR spectroscopic semi-quantification of iron phases: A new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems. Corros. Sci. 2018;133:68–77. doi: 10.1016/j.corsci.2018.01.016. DOI
Aramendia J., Gomez-Nubla L., Bellot-Gurlet L., Castro K., Paris C., Colomban P., Madariaga J.M. Protective ability index measurement through Raman quantification imaging to diagnose the conservation state of weathering steel structures. J. Raman Spectrosc. 2014;45:1076–1084. doi: 10.1002/jrs.4549. DOI
Chen H., Cui H., He Z., Lu L., Huang Y. Influence of chloride deposition rate on rust layer protectiveness and corrosion severity of mild steel in tropical coastal atmosphere. Mater. Chem. Phys. 2021;259:123971. doi: 10.1016/j.matchemphys.2020.123971. DOI
Křivý V., Kubzová M., Konečný P., Kreislová K. Corrosion Processes on Weathering Steel Bridges Influenced by Deposition of De-Icing Salts. Materials. 2019;12:1089. doi: 10.3390/ma12071089. PubMed DOI PMC
Determination of the Chloride Ion Deposition by the Bresle Method