Determination of the Chloride Ion Deposition by the Bresle Method
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SP2024/058
Student Grant Competition of VŠB-TUO
CZ.02.01.01/00/22_008/0004631
Jan Amos Komensky Operational Program financed by the European Union
GACR 22-19812S
Czech Grant Agency
PubMed
39685118
PubMed Central
PMC11642138
DOI
10.3390/ma17235684
PII: ma17235684
Knihovny.cz E-zdroje
- Klíčová slova
- Bresle method, ISO 8502-6, ISO 8502-9, ISO 9225, deposition of chloride ions, wet candle,
- Publikační typ
- časopisecké články MeSH
In corrosion science, accurate determination of chloride ion deposition rates is critical to mitigating the environmental impact on structures. Traditional methods, such as the wet candle and dry plate methods (ISO 9225), are often inaccurate in capturing localized conditions and are also time-consuming and costly. The Bresle method, which measures soluble salts directly on metal surfaces, offers a more targeted approach. This article examines the Bresle method as an alternative for determining average monthly chloride ion deposition rates, including a regression analysis comparing the Bresle method with the wet candle method, and examines the long-term salinity of exposed surfaces in comparison with the additive approach to surface salinity. This paper hypothesizes that the Bresle method can be used as an alternative to the wet candle method. Linear regression analysis shows a strong correlation in chloride ion deposition rates compared to those measured by the wet candle method. However, cumulative measurements using long-term exposed coupons are unreliable due to inconsistent trends.
Zobrazit více v PubMed
Vacek M., Křivỳ V., Kreislová K., Vlachová M., Kubzová M. Experimental Measurement of Deposition Chloride Ions in the Vicinity of Road Cut. Materials. 2022;16:88. doi: 10.3390/ma16010088. PubMed DOI PMC
Choi W., Lee D., Bahn C.B. Quantitative analysis methods of chloride deposition on silver for atmospheric corrosion monitoring in South Korea. Corrosion. 2021;77:53–61. doi: 10.5006/3622. PubMed DOI
Chico B., Alcántara J., Pino E., Díaz I., Simancas J., Torres-Pardo A., de la Fuente D., Jiménez J.A., Marco J.F., González-Calbet J.M., et al. Rust exfoliation on carbon steels in chloride-rich atmospheres. Corros. Rev. 2015;33:263–282. doi: 10.1515/corrrev-2015-0025. DOI
Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Measurement of Environmental Parameters Affecting Corrosivity of Atmospheres. International Organization for Standardization; Geneva, Switzerland: 2012.
Boan M.E., Rodríguez A., Abreu C., Echeverría C. Unraveling the Impact of Chloride and Sulfate Ions Collection on Atmospheric Corrosion of Steel. Corrosion. 2013;69:1217–1224. doi: 10.5006/1030. DOI
Wu D., Hu Y., Liu Y., Zhang R. Review of chloride ion detection technology in water. Appl. Sci. 2021;11:11137. doi: 10.3390/app112311137. DOI
Preparation of Steel Substrates Before Application of Paints and Related Products—Tests for the Assessment of Surface Cleanliness—Part 6: Extraction of Water Soluble contaminants for Analysis (Bresle Method) International Organization for Standardization; Geneva, Switzerland: 2020.
Preparation of Steel Substrates Before Application of Paints and Related Products—Tests for the Assessment of Surface Cleanliness—Part 9: Field Method for the Conductometric Determination of Water—Soluble Salts. International Organization for Standardization; Geneva, Switzerland: 2020.
Momber A., Greverath W. Surface preparation standards for steel substrates-a critical review. J. Prot. Coat. Linings. 2004;21:48–57.
Sanders C., Stewart C. Salt Deposition on F-5 Aircraft in Various Service Environments; Proceedings of the AMPP Corrosion; San Antonio, TX, USA. 6–10 March 2022; p. D031S028R004.
Standard Test Method for Conductimetric Analysis of Water Soluble Ionic Contamination of Blast Cleaning Abrasives. ASTM; West Conshohocken, PA, USA: 2020.
Rumble R.J., Bruno J.T., Doa J.M., Burgess R.D. CRC Handbook of Chemistry and Physics. CRC Press; Boca Raton, FL, USA: 2024.
Hope S. Field testing for soluble salts. J. Prot. Coat. Linings. 2020;37:32–36.
Axelsen S.B., Knudsen O.Ø. The effect of water-soluble salt contamination on coating performance; Proceedings of the NACE CORROSION; Houston, TX, USA. 13 March 2011; p. NACE-11042.
Islam M. Performance of Marine Coatings Applied On Steel Surfaces Prepared By Ultra High Pressure Waterjetting (UHP-WJ); Proceedings of the NACE CORROSION; Salt Lake City, UT, USA. 11 March 2012; p. NACE-2012.
Kubzová M., Křivý V., Kreislová K. Probabilistic Prediction of Corrosion Damage of Steel Structures in the Vicinity of Roads. Sustainability. 2020;12:9851. doi: 10.3390/su12239851. DOI
Ghali E., Sastri V.S., Elboujdaini M. Corrosion Prevention and Protection: Practical Solutions. John Wiley & Sons; Hoboken, NJ, USA: 2007.
Zehra S., Mobin M., Aslam R. Eco-Friendly Corrosion Inhibitors. Elsevier; Amsterdam, The Netherlands: 2022. Corrosion prevention and protection methods; pp. 13–26.
Vinod B., Swetha G. Laser-Assisted Machining: Processes and Applications. Wiley; Hoboken, NJ, USA: 2024. A Review of the Effects of Laser Cleaning on the Development of Corrosion and the Removal of Rust in Steel Bridges in Marine Environments; pp. 87–113.
Ungermann D., Hatke P. Proceedings of the Publication of ECCS-European Convention for Constructional Steelwork. European Convention for Constructional Steelwork; Brussels, Belgium: 2021. European design guide for the use of weathering steel in bridge construction; pp. 7–29.
Crampton D.D., Holloway K.P., Fraczek J. Assessment of Weathering Steel Bridge Performance in Iowa and Development of Inspection and Maintenance Techniques. Department of Transportation, Office of Bridges and Structures; Ames, IA, USA: 2013. Technical Report.
Qu F., Li W., Dong W., Tam V.W., Yu T. Durability deterioration of concrete under marine environment from material to structure: A critical review. J. Build. Eng. 2021;35:102074. doi: 10.1016/j.jobe.2020.102074. DOI
Novotny E.V., Sander A.R., Mohseni O., Stefan H.G. Chloride ion transport and mass balance in a metropolitan area using road salt. Water Resour. Res. 2009;45 doi: 10.1029/2009WR008141. DOI
Křivỳ V., Kubzová M., Konečnỳ P., Kreislová K. Corrosion processes on weathering steel bridges influenced by deposition of de-icing salts. Materials. 2019;12:1089. doi: 10.3390/ma12071089. PubMed DOI PMC
Lehner P., Kubzová M., Křivỳ V., Konečnỳ P., Bujdoš D., Rovnaníková P. Correlation between surface concentration of chloride ions and chloride deposition rate in concrete. Constr. Build. Mater. 2022;320:126183. doi: 10.1016/j.conbuildmat.2021.126183. DOI
Shi X., Veneziano D., Xie N., Gong J. Use of chloride-based ice control products for sustainable winter maintenance: A balanced perspective. Cold Reg. Sci. Technol. 2013;86:104–112. doi: 10.1016/j.coldregions.2012.11.001. DOI
Krivy V., Kubzova M., Kreislova K., Urban V. Characterization of corrosion products on weathering steel bridges influenced by chloride deposition. Metals. 2017;7:336. doi: 10.3390/met7090336. DOI
Ma Y., Li Y., Wang F. Corrosion of low carbon steel in atmospheric environments of different chloride content. Corros. Sci. 2009;51:997–1006. doi: 10.1016/j.corsci.2009.02.009. DOI
Pradhan B., Bhattacharjee B. Rebar corrosion in chloride environment. Constr. Build. Mater. 2011;25:2565–2575. doi: 10.1016/j.conbuildmat.2010.11.099. DOI
Konečnỳ P., Lehner P., Vořechovská D., Šomodíková M., Horňáková M., Rovnaníková P. Evaluation of durability-related field inspection data from concrete bridges under service. Arch. Metall. Mater. 2020;65:81–89. doi: 10.1016/j.prostr.2020.06.054. DOI
Chatterjee S., Hadi A.S. Regression Analysis by Example. John Wiley & Sons; Hoboken, NJ, USA: 2015.
Vacek M., Křivý V., Křistková B. Determining of the Deposition of Chloride Ions by the Bresle Method. 2024. [(accessed on 18 October 2024)]. Available online: https://zenodo.org/records/13938046.
Gassen L., Esters L., Ribas-Ribas M., Wurl O. The impact of rainfall on the sea surface salinity: A mesocosm study. Sci. Rep. 2024;14:6353. doi: 10.1038/s41598-024-56915-4. PubMed DOI PMC
Aldabe J., Elustondo D., Santamaría C., Lasheras E., Pandolfi M., Alastuey A., Querol X., Santamaría J. Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain) Atmos. Res. 2011;102:191–205. doi: 10.1016/j.atmosres.2011.07.003. DOI
Contini D., Cesari D., Donateo A., Chirizzi D., Belosi F. Characterization of PM10 and PM2.5 and their metals content in different typologies of sites in South-Eastern Italy. Atmosphere. 2014;5:435–453. doi: 10.3390/atmos5020435. DOI
Bredeck G., Souza E.J.d.S., Wigmann C., Fomba K.W., Herrmann H., Schins R.P. The influence of long-range transported Saharan dust on the inflammatory potency of ambient PM2.5 and PM10. Environ. Res. 2024;252:119008. doi: 10.1016/j.envres.2024.119008. PubMed DOI
Ambade B., Sankar T., Sahu L., Dumka U. Understanding Sources and Composition of Black Carbon and PM2.5 in Urban Environments in East India. Urban Sci. 2022;6:60. doi: 10.3390/urbansci6030060. DOI
Kreislová K., Geiplová H., Skořepová I., Skořepa J., Majtás D. Updated maps of atmospheric corrosivity for Czech Republic. KOM-Mater. Prot. J. 2015;59:81–86. (In Czech)
Portal CHMI: Historical Data: Weather: Monthly Data: Monthly Data According to 123/1998 Sb. 2024. [(accessed on 1 November 2024)]. Available online: https://www.chmi.cz/historicka-data/pocasi/mesicni-data/mesicni-data-dle-z.-123-1998-Sb. (In Czech)
Abbas Y., Pargar F., Koleva D.A., van Breugel K., Olthuis W., van den Berg A. Non-destructive measurement of chloride ions concentration in concrete–A comparative analysis of limitations and prospects. Constr. Build. Mater. 2018;174:376–387. doi: 10.1016/j.conbuildmat.2018.04.135. DOI
Xin M., Li B., Li L., Lan M., Wei X. Measurement techniques for complex surface based on a non-contact measuring machine. Int. J. Adv. Manuf. Technol. 2022;121:6991–7003. doi: 10.1007/s00170-022-09803-y. DOI
Martínez-Ayala L., Bornacelli J., Ojeda-Misses M.A., Arano-Martinez J.A., Torres-Torres C., Martines-Arano H. Chaos-driven detection of methylene blue in wastewater using fractional calculus and laser systems. Meas. Sci. Technol. 2024;36:015801. doi: 10.1088/1361-6501/ad817d. DOI
Tian Y., Zhang G., Ye H., Zeng Q., Zhang Z., Tian Z., Jin X., Jin N., Chen Z., Wang J. Corrosion of steel rebar in concrete induced by chloride ions under natural environments. Constr. Build. Mater. 2023;369:130504. doi: 10.1016/j.conbuildmat.2023.130504. DOI