Corrosion Processes on Weathering Steel Bridges Influenced by Deposition of De-Icing Salts

. 2019 Apr 02 ; 12 (7) : . [epub] 20190402

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30986966

Grantová podpora
18-07949S Grantová Agentura České Republiky

The safety and durability of bridges designed from weathering steels are conditioned by the development of a sufficiently protective layer of corrosion products. Air pollution, microclimate around the bridge, time of wetness, structural solution of the bridge, and the position and orientation of the surface within the bridge structure all influence the development of protective layers on the surface of the weathering steel. In this article, attention is focused mainly on the microclimatic effects resulting from the road traffic under the bridge. The influence of chloride deposition on the development of corrosion products is evaluated using experimental in situ testing. Two neighboring bridges made of weathering steel and crossing different types of obstacles were selected for this experiment. Relations and dependences between the measured parameters (deposition rate of chlorides, corrosion rates, thickness of corrosion products and the amount of chlorides in corrosion products) are evaluated and discussed.

Zobrazit více v PubMed

Morcillo M., Díaz I., Chico B., Cano H., de la Fuente D. Weathering steels: From empirical development to scientific design. A review. Corros. Sci. 2014;83:6–31. doi: 10.1016/j.corsci.2014.03.006. DOI

BD 7/01 Weathering Steel for Highway Structures. British Standards Institution; London, UK: 2001.

Czarnecki A.A., Nowak A.S. Time-variant reliability profiles for steel girder bridges. Struct. Saf. 2008;30:49–64. doi: 10.1016/j.strusafe.2006.05.002. DOI

Lebet J.P., Lang T.P. Brücken aus wetterfestem Stahl. Tec 21. 2002;24:23–29. (In German)

Kotes P., Vican J. Recommended reliability levels for the evaluation of existing bridges according to Eurocodes. Struct. Eng. Int. 2013;23:411–417. doi: 10.2749/101686613X13627351081678. DOI

Leygraf C., Wallinder I.O., Tidblad J., Graedel T. Atmospheric Corrosion. 2nd ed. John Wiley & Sons, Inc.; New York, NY, USA: 2016.

Krivy V., Urban V., Kreislova K. Development and failures of corrosion layers on typical surfaces of weathering steel bridges. Eng. Fail. Anal. 2016;69:147–160. doi: 10.1016/j.engfailanal.2015.12.007. DOI

Damgaard N., Walbridge S., Hansson C., Yeung J. Corrosion protection and assessment of weathering steel highway structures. J. Constr. Steel Res. 2010;66:1174–1185. doi: 10.1016/j.jcsr.2010.04.012. DOI

Pul R.E.W.W., Springel M.M. Estimating the service life of epoxy-coated reinforcing steel. Mater. J. 1998;95:546–557.

Krivy V., Kubzova M., Kreislova K., Urban V. Characterization of corrosion products on weathering steel bridges influenced by chloride deposition. Metals. 2017;7:336. doi: 10.3390/met7090336. DOI

Wang J.H., Wei F.I., Chang Y.S., Shih H.C. The corrosion mechanisms of carbon steel and weathering steel in SO2 polluted atmospheres. Mater. Chem. Phys. 1997;47:1–8. doi: 10.1016/S0254-0584(97)80019-3. DOI

Kreislova K., Geiplova H., Bartak Z., Majtas D. Atmospheric corrosion models. Koroze a Ochrana Materiálu. 2017;61:59–66. doi: 10.1515/kom-2017-0007. (In Czech) DOI

Wallinder I.O., Bahar B., Leygraf C., Tidblad J. Modelling and mapping of copper runoff for Europe. J. Environ. Monit. 2007;9:66–73. doi: 10.1039/B612041E. PubMed DOI

Dolling C., Hudson R. Weathering steel bridges in the U.K. Rev. Métall. 2003;100:1125–1133. doi: 10.1051/metal:2003171. DOI

Alcantara J., Fuente D., Chico B., Simancas J., Diaz I., Morcillo M. Marine atmospheric corrosion of carbon steel: A review. Materials. 2017;10:406. doi: 10.3390/ma10040406. PubMed DOI PMC

Sunil Kumar S., Londe N.V., Dilip Kumar K., Kittur M.I. A review on deterioration of mechanical behaviour of high strength materials under corrosive environment. IOP Conf. Ser. Mater. Sci. Eng. 2018;376:012106. doi: 10.1088/1757-899X/376/1/012106. DOI

Krivy V., Marek P., Kreislova K., Knotkova D. Bestimmung der Dickenzuschläge für wetterfesten Stahl im Brückenbau. Stahlbau. 2013;82:583–588. doi: 10.1002/stab.201310034. DOI

Houska C. Deicing Salt–Recognizing the Corrosion Threat. International Molybdenum Association, Pittsburgh, TMR Consulting; Pittsburgh, PA, USA: 2007.

ISO 9223 Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Classification, Determination and Estimation. International Organization for Standardization; Geneva, Switzerland: 2012.

Melchers R.E. A new interpretation of the corrosion loss processes for weathering steels in marine atmospheres. Corros. Sci. 2008;50:3446–3454. doi: 10.1016/j.corsci.2008.09.003. DOI

ASTM G101-04 Guide for Estimating the Atmospheric Corrosion Resistance of Low-Alloy Steels. ASTM International; West Conshohocken, PA, USA: 2004.

ISO 9225 Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Measurement of Environmental Parameters Affecting Corrosivity of Atmospheres. International Organization for Standardization; Geneva, Switzerland: 2012.

ISO 9226 Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Determination of Corrosion Rate of Standard Specimens for the Evaluation of Corrosivity. International Organization for Standardization; Geneva, Switzerland: 2012.

ISO 8407 Corrosion of Metals and Alloys—Removal of Corrosion Products from Corrosion Test Specimens. International Organization for Standardization; Geneva, Switzerland: 2009.

Kamimura T., Hara S., Miuyki H., Yamashita M., Uchida M. Composition and protective ability of rust layer formed on weathering steel exposed to various environments. Corros. Sci. 2006;48:2799–2812. doi: 10.1016/j.corsci.2005.10.004. DOI

Hara S., Kamimura T., Miyuki H., Yamashita M. Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge. Corros. Sci. 2007;49:1131–1142. doi: 10.1016/j.corsci.2006.06.016. DOI

Crampton D.D., Holloway K.P., Fraczek J. Assessment of Weathering Steel Bridges Performance in Iowa and Development of Inspection and Maintenance Techniques; Proceedings of the Transportation Research Board 94th Annual Meeting; Washington, DC, USA. 11–15 January 2015.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Determination of the Chloride Ion Deposition by the Bresle Method

. 2024 Nov 21 ; 17 (23) : . [epub] 20241121

Experimental Measurement of Deposition Chloride Ions in the Vicinity of Road Cut

. 2022 Dec 22 ; 16 (1) : . [epub] 20221222

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...