Corrosion Processes on Weathering Steel Bridges Influenced by Deposition of De-Icing Salts
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-07949S
Grantová Agentura České Republiky
PubMed
30986966
PubMed Central
PMC6479928
DOI
10.3390/ma12071089
PII: ma12071089
Knihovny.cz E-zdroje
- Klíčová slova
- corrosion layer, corrosion samples, deposition rate of chlorides, experimental tests, steel bridges, weathering steel,
- Publikační typ
- časopisecké články MeSH
The safety and durability of bridges designed from weathering steels are conditioned by the development of a sufficiently protective layer of corrosion products. Air pollution, microclimate around the bridge, time of wetness, structural solution of the bridge, and the position and orientation of the surface within the bridge structure all influence the development of protective layers on the surface of the weathering steel. In this article, attention is focused mainly on the microclimatic effects resulting from the road traffic under the bridge. The influence of chloride deposition on the development of corrosion products is evaluated using experimental in situ testing. Two neighboring bridges made of weathering steel and crossing different types of obstacles were selected for this experiment. Relations and dependences between the measured parameters (deposition rate of chlorides, corrosion rates, thickness of corrosion products and the amount of chlorides in corrosion products) are evaluated and discussed.
Zobrazit více v PubMed
Morcillo M., Díaz I., Chico B., Cano H., de la Fuente D. Weathering steels: From empirical development to scientific design. A review. Corros. Sci. 2014;83:6–31. doi: 10.1016/j.corsci.2014.03.006. DOI
BD 7/01 Weathering Steel for Highway Structures. British Standards Institution; London, UK: 2001.
Czarnecki A.A., Nowak A.S. Time-variant reliability profiles for steel girder bridges. Struct. Saf. 2008;30:49–64. doi: 10.1016/j.strusafe.2006.05.002. DOI
Lebet J.P., Lang T.P. Brücken aus wetterfestem Stahl. Tec 21. 2002;24:23–29. (In German)
Kotes P., Vican J. Recommended reliability levels for the evaluation of existing bridges according to Eurocodes. Struct. Eng. Int. 2013;23:411–417. doi: 10.2749/101686613X13627351081678. DOI
Leygraf C., Wallinder I.O., Tidblad J., Graedel T. Atmospheric Corrosion. 2nd ed. John Wiley & Sons, Inc.; New York, NY, USA: 2016.
Krivy V., Urban V., Kreislova K. Development and failures of corrosion layers on typical surfaces of weathering steel bridges. Eng. Fail. Anal. 2016;69:147–160. doi: 10.1016/j.engfailanal.2015.12.007. DOI
Damgaard N., Walbridge S., Hansson C., Yeung J. Corrosion protection and assessment of weathering steel highway structures. J. Constr. Steel Res. 2010;66:1174–1185. doi: 10.1016/j.jcsr.2010.04.012. DOI
Pul R.E.W.W., Springel M.M. Estimating the service life of epoxy-coated reinforcing steel. Mater. J. 1998;95:546–557.
Krivy V., Kubzova M., Kreislova K., Urban V. Characterization of corrosion products on weathering steel bridges influenced by chloride deposition. Metals. 2017;7:336. doi: 10.3390/met7090336. DOI
Wang J.H., Wei F.I., Chang Y.S., Shih H.C. The corrosion mechanisms of carbon steel and weathering steel in SO2 polluted atmospheres. Mater. Chem. Phys. 1997;47:1–8. doi: 10.1016/S0254-0584(97)80019-3. DOI
Kreislova K., Geiplova H., Bartak Z., Majtas D. Atmospheric corrosion models. Koroze a Ochrana Materiálu. 2017;61:59–66. doi: 10.1515/kom-2017-0007. (In Czech) DOI
Wallinder I.O., Bahar B., Leygraf C., Tidblad J. Modelling and mapping of copper runoff for Europe. J. Environ. Monit. 2007;9:66–73. doi: 10.1039/B612041E. PubMed DOI
Dolling C., Hudson R. Weathering steel bridges in the U.K. Rev. Métall. 2003;100:1125–1133. doi: 10.1051/metal:2003171. DOI
Alcantara J., Fuente D., Chico B., Simancas J., Diaz I., Morcillo M. Marine atmospheric corrosion of carbon steel: A review. Materials. 2017;10:406. doi: 10.3390/ma10040406. PubMed DOI PMC
Sunil Kumar S., Londe N.V., Dilip Kumar K., Kittur M.I. A review on deterioration of mechanical behaviour of high strength materials under corrosive environment. IOP Conf. Ser. Mater. Sci. Eng. 2018;376:012106. doi: 10.1088/1757-899X/376/1/012106. DOI
Krivy V., Marek P., Kreislova K., Knotkova D. Bestimmung der Dickenzuschläge für wetterfesten Stahl im Brückenbau. Stahlbau. 2013;82:583–588. doi: 10.1002/stab.201310034. DOI
Houska C. Deicing Salt–Recognizing the Corrosion Threat. International Molybdenum Association, Pittsburgh, TMR Consulting; Pittsburgh, PA, USA: 2007.
ISO 9223 Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Classification, Determination and Estimation. International Organization for Standardization; Geneva, Switzerland: 2012.
Melchers R.E. A new interpretation of the corrosion loss processes for weathering steels in marine atmospheres. Corros. Sci. 2008;50:3446–3454. doi: 10.1016/j.corsci.2008.09.003. DOI
ASTM G101-04 Guide for Estimating the Atmospheric Corrosion Resistance of Low-Alloy Steels. ASTM International; West Conshohocken, PA, USA: 2004.
ISO 9225 Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Measurement of Environmental Parameters Affecting Corrosivity of Atmospheres. International Organization for Standardization; Geneva, Switzerland: 2012.
ISO 9226 Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Determination of Corrosion Rate of Standard Specimens for the Evaluation of Corrosivity. International Organization for Standardization; Geneva, Switzerland: 2012.
ISO 8407 Corrosion of Metals and Alloys—Removal of Corrosion Products from Corrosion Test Specimens. International Organization for Standardization; Geneva, Switzerland: 2009.
Kamimura T., Hara S., Miuyki H., Yamashita M., Uchida M. Composition and protective ability of rust layer formed on weathering steel exposed to various environments. Corros. Sci. 2006;48:2799–2812. doi: 10.1016/j.corsci.2005.10.004. DOI
Hara S., Kamimura T., Miyuki H., Yamashita M. Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge. Corros. Sci. 2007;49:1131–1142. doi: 10.1016/j.corsci.2006.06.016. DOI
Crampton D.D., Holloway K.P., Fraczek J. Assessment of Weathering Steel Bridges Performance in Iowa and Development of Inspection and Maintenance Techniques; Proceedings of the Transportation Research Board 94th Annual Meeting; Washington, DC, USA. 11–15 January 2015.
Determination of the Chloride Ion Deposition by the Bresle Method
Experimental Measurement of Deposition Chloride Ions in the Vicinity of Road Cut