Worse sleep and increased energy expenditure yet no movement changes in sub-urban wild boar experiencing an influx of human visitors (anthropulse) during the COVID-19 pandemic
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36966827
PubMed Central
PMC10038670
DOI
10.1016/j.scitotenv.2023.163106
PII: S0048-9697(23)01725-4
Knihovny.cz E-zdroje
- Klíčová slova
- Bio-logging, COVID-19 lockdown, Disturbance, Human impact, Sus scrofa,
- MeSH
- COVID-19 MeSH
- divoká zvířata MeSH
- ekosystém MeSH
- lidé MeSH
- pandemie MeSH
- prasata MeSH
- Sus scrofa * fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Expansion of urban areas, landscape transformation and increasing human outdoor activities strongly affect wildlife behaviour. The outbreak of the COVID-19 pandemic in particular led to drastic changes in human behaviour, exposing wildlife around the world to either reduced or increased human presence, potentially altering animal behaviour. Here, we investigate behavioural responses of wild boar (Sus scrofa) to changing numbers of human visitors to a suburban forest near Prague, Czech Republic, during the first 2.5 years of the COVID-19 epidemic (April 2019-November 2021). We used bio-logging and movement data of 63 GPS-collared wild boar and human visitation data based on an automatic counter installed in the field. We hypothesised that higher levels of human leisure activity will have a disturbing effect on wild boar behaviour manifested in increased movements and ranging, energy spent, and disrupted sleep patterns. Interestingly, whilst the number of people visiting the forest varied by two orders of magnitude (from 36 to 3431 people weekly), even high levels of human presence (>2000 visitors per week) did not affect weekly distance travelled, home range size, and maximum displacement of wild boar. Instead, individuals spent 41 % more energy at high levels of human presence (>2000 visitors per week), with more erratic sleep patterns, characterised by shorter and more frequent sleeping bouts. Our results highlight multifaceted effects of increased human activities ('anthropulses'), such as those related to COVID-19 countermeasures, on animal behaviour. High human pressure may not affect animal movements or habitat use, especially in highly adaptable species such as wild boar, but may disrupt animal activity rhythms, with potentially detrimental fitness consequences. Such subtle behavioural responses can be overlooked if using only standard tracking technology.
Zobrazit více v PubMed
Bar H. COVID-19 lockdown: animal life, ecosystem and atmospheric environment. Environ. Dev. Sustain. 2021;23(6):8161–8178. doi: 10.1007/s10668-020-01002-7. PubMed DOI PMC
Bates D., Mächler M., Bolker B., Walker S. ArXiv; 2014. Fitting Linear Mixed-Effects Models Using lme4. E-Prints, arXiv:1406. DOI
Bates A.E., Primack R.B., Moraga P., Duarte C.M. COVID-19 pandemic and associated lockdown as a “Global human confinement experiment” to investigate biodiversity conservation. Biol. Conserv. 2020;248 doi: 10.1016/j.biocon.2020.108665. PubMed DOI PMC
Bates A.E., Primack R.B., Biggar B.S., Bird T.J., Acevedo-Charry O., Colón-Piñeiro Z., Ocampo D., Ocampo-Peñuela N., Sánchez-Clavijo L.M., Adamescu C.M., Cheval S., Racoviceanu T., Kuuire V.Z., Aditya V., Anderwald P., Wiesmann S., Wipf S., Badihi G., Henderson M.G., Duarte C.M.… Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biol. Conserv. 2021;263 doi: 10.1016/j.biocon.2021.109175. PubMed DOI PMC
Baud M.O., Magistretti P.J., Petit J.-M. Sustained sleep fragmentation affects brain temperature, food intake and glucose tolerance in mice. J. Sleep Res. 2013;22:3–12. PubMed
Behera A.K., Kumar P.R., Priya M.M., Ramesh T., Kalle R. The impacts of COVID-19 lockdown on wildlife in Deccan Plateau, India. Sci. Total Environ. 2022;822 doi: 10.1016/j.scitotenv.2022.153268. PubMed DOI PMC
Boitani L., Mattei L., Nonis D., Corsi F. Spatial and activity patterns of wild boars in Tuscany, Italy. Journal of Mammalogy. 1994;75(3):600–612. doi: 10.2307/1382507. DOI
Bonnet M.H., Arand D.L. Clinical effects of sleep fragmentation versus sleep deprivation. Sleep Med. Rev. 2003;7:297–310. PubMed
Börger L., Franconi N., Ferretti F., Meschi F., Michele G., Gantz A., Coulson T. An integrated approach to identify spatiotemporal and individual-level determinants of animal home range size. Am. Nat. 2006;168:471–485. PubMed
Bruinderink G.W.T.A.G., Hazebroek E. Ungulate traffic collisions in Europe. Conserv. Biol. 1996;10(4):1059–1067. doi: 10.1046/j.1523-1739.1996.10041059.x. DOI
Calenge C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 2006;197(3):516–519. doi: 10.1016/j.ecolmodel.2006.03.017. DOI
Capellini I., Nunn C.L., McNamara P., Preston B.T., Barton R.A. Energetic constraints, not predation, influence the evolution of sleep patterning in mammals. Funct. Ecol. 2008;22:847–853. PubMed PMC
Castillo-Contreras R., Carvalho J., Serrano E., Mentaberre G., Fernández-Aguilar X., Colom A., González-Crespo C., Lavín S., López-Olvera J.R. Urban wild boars prefer fragmented areas with food resources near natural corridors. Sci. Total Environ. 2018;615:282–288. doi: 10.1016/j.scitotenv.2017.09.277. PubMed DOI
Courbin N., Garel M., Marchand P., Duparc A., Debeffe L., Börger L., Loison A. Interacting lethal and nonlethal human activities shape complex risk tolerance behaviors in a mountain herbivore. Ecol. Appl. 2022;32 PubMed
Cukor J., Linda R., Mahlerová K., Vacek Z., Faltusová M., Marada P., Havránek F., Hart V. Different patterns of human activities in nature during Covid-19 pandemic and African swine fever outbreak confirm direct impact on wildlife disruption. Sci. Rep. 2021;11(1):1. doi: 10.1038/s41598-021-99862-0. PubMed DOI PMC
Day B.H. The value of greenspace under pandemic lockdown. Environ. Resour. Econ. 2020;76(4):1161–1185. doi: 10.1007/s10640-020-00489-y. PubMed DOI PMC
Derks J., Giessen L., Winkel G. COVID-19-induced visitor boom reveals the importance of forests as critical infrastructure. Forest Policy Econ. 2020;118 doi: 10.1016/j.forpol.2020.102253. PubMed DOI PMC
Driessen M.M. COVID-19 restrictions provide a brief respite from the wildlife roadkill toll. Biol. Conserv. 2021;256 doi: 10.1016/j.biocon.2021.109012. PubMed DOI PMC
Eco-Counter Mobile MULTI - Mobile/temporary bike & pedestrian counter. Eco-Counter. 2022. https://www.eco-counter.com/produits/multi-range/mobile-multi
Fattebert J., Baubet E., Slotow R., Fischer C. Landscape effects on wild boar home range size under contrasting harvest regimes in a human-dominated agro-ecosystem. Eur. J. Wildl. Res. 2017;63:32. doi: 10.1007/s10344-017-1090-9. DOI
Fenati M., Monaco A., Guberti V. Efficiency and safety of xylazine and tiletamine/zolazepam to immobilize captured wild boars (Sus scrofa L. 1758): analysis of field results. Eur. J. Wildl. Res. 2008;54(2):269–274. doi: 10.1007/s10344-007-0140-0. DOI
Fernández-Aguilar X., Gottschalk M., Aragon V., Càmara J., Ardanuy C., Velarde R., Galofré-Milà N., Castillo-Contreras R., López-Olvera J.R., Mentaberre G., Colom-Cadena A., Lavín S., Cabezón O. Urban Wild Boars and Risk for Zoonotic Streptococcus suis, Spain. Emerging Infectious Diseases. 2018;24(6):1083–1086. doi: 10.3201/eid2406.171271. PubMed DOI PMC
Ferrara M., De Gennaro L. How much sleep do we need? Sleep Med. Rev. 2001;5(2):155–179. doi: 10.1053/smrv.2000.0138. PubMed DOI
Gangwisch J.E., Malaspina D., Boden-Albala B., Heymsfield S.B. Inadequate sleep as a risk factor for obesity: analyses of the NHANES I. Sleep. 2005;28(10):1289–1296. doi: 10.1093/sleep/28.10.1289. PubMed DOI
Gaynor K.M., Hojnowski C.E., Carter N.H., Brashares J.S. The influence of human disturbance on wildlife nocturnality. Science. 2018;360(6394):1232–1235. doi: 10.1126/science.aar7121. PubMed DOI
Geisser H., Reyer H.-U. The influence of food and temperature on population density of wild boar Sus scrofa in the Thurgau (Switzerland) J. Zool. 2005;267:89–96. doi: 10.1017/S095283690500734X. DOI
Gillich B., Michler F.-U., Stolter C., Rieger S. Differences in social-space–time behaviour of two red deer herds (Cervus elaphus) Acta Ethol. 2021 doi: 10.1007/s10211-021-00375-w. DOI
Gravett N., Bhagwandin A., Sutcliffe R., Landen K., Chase M.J., Lyamin O.I., Siegel J.M., Manger P.R. Inactivity/sleep in two wild free-roaming African elephant matriarchs – does large body size make elephants the shortest mammalian sleepers? PLoS ONE. 2017;12 PubMed PMC
Grund M.D., McAninch J.B., Wiggers E.P. Seasonal movements and habitat use of female white-tailed deer associated with an Urban Park. J. Wildl. Manag. 2002;66(1):123–130. doi: 10.2307/3802878. DOI
Gunn R.L., Hartley I.R., Algar A.C., Niemelä P.T., Keith S.A. Understanding behavioural responses to human-induced rapid environmental change: a meta-analysis. Oikos. 2022;2022
Gunner R.M., Holton M.D., Scantlebury D.M., Hopkins P., Shepard E.L.C., Fell A.J., Garde B., Quintana F., Gómez-Laich A., Yoda K., Yamamoto T., English H., Ferreira S., Govender D., Viljoen P., Bruns A., van Schalkwyk O.L., Cole N.C., Tatayah V., Wilson R.P.… How often should dead-reckoned animal movement paths be corrected for drift? Anim. Biotelemetry. 2021;9(1):43. doi: 10.1186/s40317-021-00265-9. PubMed DOI PMC
Hockenhull J., Squibb K., Cameron A. How has the COVID-19 pandemic affected the way we access and interact with the countryside and the animals within it? Animals. 2021;11(8):2281. doi: 10.3390/ani11082281. PubMed DOI PMC
Ikeda T., Kuninaga N., Suzuki T., Ikushima S., Suzuki M. Tourist-wild boar (Sus scrofa) interactions in urban wildlife management. Glob. Ecol. Conserv. 2019;18 doi: 10.1016/j.gecco.2019.e00617. DOI
Jarský V., Palátová P., Riedl M., Zahradník D., Rinn R., Hochmalová M. Forest attendance in the times of COVID-19-a case study on the example of the Czech Republic. Int. J. Environ. Res. Public Health. 2022;19(5):2529. doi: 10.3390/ijerph19052529. PubMed DOI PMC
Jędrzejewska B., Jędrzejewski W., Bunevich A.N., Miłkowski L., Krasiński Z.A. Vol. 53. 1997. Factors Shaping Population Densities and Increase Rates of Ungulates in Białowieża Primeval Forest (Poland and Belarus) in the 19th and 20th Centuries.
Ježek M., Holá M., Tomáš K., Jaroslav Č. Creeping into a wild boar stomach to find traces of supplementary feeding. Wildl. Res. 2016;43:590–598. doi: 10.1071/WR16065. DOI
Jiang G., Minghai Z., Ma J. Effects of human disturbance on movement, foraging and bed selection in red deerCervus elaphus xanthopygus from the Wandashan Mountains, northeastern China. Acta Theriol. 2007;52:435–446. doi: 10.1007/BF03194241. DOI
Johann F., Handschuh M., Linderoth P., Dormann C.F., Arnold J. Adaptation of wild boar (Sus scrofa) activity in a human-dominated landscape. BMC Ecol. 2020;20(1):4. doi: 10.1186/s12898-019-0271-7. PubMed DOI PMC
Johann F., Handschuh M., Linderoth P., Heurich M., Dormann C., Arnold J. Variability of daily space use in wild boar sus scrofa. Wildl. Biol. 2020;2020 doi: 10.2981/wlb.00609. PubMed DOI PMC
Keuling O., Massei G. Does hunting affect the behavior of wild pigs? Hum.Wildl. Interact. 2021;15 doi: 10.26077/3a83-9155. DOI
Keuling O., Stier N., Roth M. Annual and seasonal space use of different age classes of female wild boar Sus scrofa L. Eur. J. Wildl. Res. 2008;54:403–412. doi: 10.1007/s10344-007-0157-4. DOI
Keuling O., Stier N., Roth M. How does hunting influence activity and spatial usage in wild boar Sus scrofa L.? Eur. J. Wildl. Res. 2008;54:729. doi: 10.1007/s10344-008-0204-9. DOI
Kleinschroth F., Kowarik I. COVID-19 crisis demonstrates the urgent need for urban greenspaces. Front. Ecol. Environ. 2020;18(6):318–319. doi: 10.1002/fee.2230. PubMed DOI PMC
Koju N.P., Kandel R.C., Acharya H.B., Dhakal B.K., Bhuju D.R. COVID-19 lockdown frees wildlife to roam but increases poaching threats in Nepal. Ecol. Evol. 2021;11(14):9198–9205. doi: 10.1002/ece3.7778. PubMed DOI PMC
Krantz S., Dowle M., Srinivasan A., Jacob M., Eddelbuettel D., Berge L., Tappe K., Worldwide R.C.T., Contributors, Plummer M., Team, 1999–2016 The R. Core collapse: Advanced and Fast Data Transformation (1.8.6) [Computer software] 2022. https://CRAN.R-project.org/package=collapse
LeClair G., Chatfield M.W.H., Wood Z., Parmelee J., Frederick C.A. Influence of the COVID-19 pandemic on amphibian road mortality. Conserv. Sci. Pract. 2021;3(11) doi: 10.1111/csp2.535. PubMed DOI PMC
Licoppe A., Prévot C., Heymans M., Bovy C., Casaer J., Cahill S. Managing Wild Boar in Human-Dominated Landscapes. International Union of Game Biologists—Congress IUGB; 2013. Wild boar/feral pig in (peri-) urban areas; pp. 1–31.
Lindsey P., Allan J., Brehony P., Dickman A., Robson A., Begg C., Bhammar H., Blanken L., Breuer T., Fitzgerald K., Flyman M., Gandiwa P., Giva N., Kaelo D., Nampindo S., Nyambe N., Steiner K., Parker A., Roe D., Tyrrell P.… Conserving Africa’s wildlife and wildlands through the COVID-19 crisis and beyond. Nat. Ecol. Evol. 2020;4(10):10. doi: 10.1038/s41559-020-1275-6. PubMed DOI
Loftus J.C., Harel R., Núñez C.L., Crofoot M.C. Ecological and social pressures interfere with homeostatic sleep regulation in the wild. elife. 2022;11 PubMed PMC
Łopucki R., Kitowski I., Perlińska-Teresiak M., Klich D. How is wildlife affected by the COVID-19 pandemic? Lockdown effect on the road mortality of hedgehogs. Animals. 2021;11(3):3. doi: 10.3390/ani11030868. PubMed DOI PMC
Lüdecke D. Ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 2018;3(26):772. doi: 10.21105/joss.00772. DOI
Lutermann H., Verburgt L., Rendigs A. Resting and nesting in a small mammal: sleeping sites as a limiting resource for female grey mouse lemurs. Anim. Behav. 2010;79(6):1211–1219. doi: 10.1016/j.anbehav.2010.02.017. DOI
Manenti R., Mori E., Di Canio V., Mercurio S., Picone M., Caffi M., Brambilla M., Ficetola G.F., Rubolini D. The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: insights from the first european locked down country. Biol. Conserv. 2020;249 doi: 10.1016/j.biocon.2020.108728. PubMed DOI PMC
Martin S.E., Wraith P.K., Deary I.J., Douglas N.J. The effect of nonvisible sleep fragmentation on daytime function. Am. J. Respir. Crit. Care Med. 1997;155:1596–1601. doi: 10.1164/ajrccm.155.5.9154863. PubMed DOI
Massei G., Kindberg J., Licoppe A., Gačić D., Šprem N., Kamler J., Baubet E., Hohmann U., Monaco A., Ozoliņš J., Cellina S., Podgórski T., Fonseca C., Markov N., Pokorny B., Rosell C., Náhlik A. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag. Sci. 2015;71(4):492–500. doi: 10.1002/ps.3965. PubMed DOI
Max-Planck-Gesellschaft Tierische Pause vom Menschen. 2021. https://www.mpg.de/15005711/covid-19-bio-logging-initiative
McDermott C.M., LaHoste G.J., Chen C., Musto A., Bazan N.G., Magee J.C. Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J. Neurosci. Off. J. Soc. Neurosci. 2003;23(29):9687–9695. PubMed PMC
McGinlay J., Gkoumas V., Holtvoeth J., Fuertes R.F.A., Bazhenova E., Benzoni A., Botsch K., Martel C.C., Sánchez C.C., Cervera I., Chaminade G., Doerstel J., García C.J.F., Jones A., Lammertz M., Lotman K., Odar M., Pastor T., Ritchie C., Jones N.… The impact of COVID-19 on the management of european protected areas and policy implications. Forests. 2020;11(11):11. doi: 10.3390/f11111214. DOI
Miwa M., Oishi K., Anzai H., Kumagai H., Ieiri S., Hirooka H. Estimation of the energy expenditure of grazing ruminants by incorporating dynamic body acceleration into a conventional energy requirement system1. J. Anim. Sci. 2017;95(2):901–909. doi: 10.2527/jas.2016.0749. PubMed DOI
Morelle K., Fattebert J., Mengal C., Lejeune P. Invading or recolonizing? Patterns and drivers of wild boar population expansion into belgian agroecosystems. Agric. Ecosyst. Environ. 2016;222:267–275. doi: 10.1016/j.agee.2016.02.016. DOI
Mortlock E., Silovský V., Güldenpfennig J., Faltusová M., Olejarz A., Börger L., Ježek M., Jennings D., Capellini I. 2022. Individual Identity and Environmental Conditions Explain Different Aspects of Sleep Behaviour in Wild Boar. Preprint. PubMed DOI PMC
Phillipson E.A., Bowes G., Sullivan C.E., Woolf G.M. The influence of sleep fragmentation on arousal and ventilatory responses to respiratory stimuli. Sleep. 1980;3:281–288. PubMed
Podgórski T., Baś G., Jędrzejewska B., Sönnichsen L., Śnieżko S., Jędrzejewski W., Okarma H. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: primeval Forest and metropolitan area. J. Mammal. 2013;94(1):109–119. doi: 10.1644/12-MAMM-A-038.1. DOI
Podrázský V., Remeš J., Hart V., Moser W. Production and humus form development in forest stands established on agricultural lands—Kostelec nad Černými lesy region. Journal of Forest Science. 2009;55:299–305. doi: 10.17221/11/2009-JFS. DOI
Qasem L., Cardew A., Wilson A., Griffiths I., Halsey L.G., Shepard E.L.C., Gleiss A.C., Wilson R. Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector? PLoS ONE. 2012;7(2) doi: 10.1371/journal.pone.0031187. PubMed DOI PMC
R Core Team . R Foundation for Statistical Computing; 2021. R: A Language and Environment for Statistical Computing.
Rahman Md.S., Alam Md.A., Salekin S., Belal Md.A.H., Rahman Md.S. The COVID-19 pandemic: a threat to forest and wildlife conservation in Bangladesh? TreesForests and People. 2021;5 doi: 10.1016/j.tfp.2021.100119. DOI
Rechtschaffen A., Bergmann B.M. Sleep deprivation in the rat: an update of the 1989 paper. Sleep. 2002;25:18–24. PubMed
Rogers N.L., Szuba M.P., Staab J.P., Evans D.L., Dinges D.F. Neuroimmunologic aspects of sleep and sleep loss. Semin. Clin. Neuropsychiatry. 2001;6(4):295–307. doi: 10.1053/scnp.2001.27907. PubMed DOI
Rosell C., Navàs F., Romero S. Reproduction of wild boar in a cropland and coastal wetland area: implications for management. Anim. Biodivers. Conserv. 2012;35:209–217. doi: 10.32800/abc.2012.35.0209. DOI
Roth T.C., Rattenborg N.C., Pravosudov V.V. The ecological relevance of sleep: The trade-off between sleep, memory and energy conservation. Philos. Trans. R. Soc. B: Biol. Sci. 2010;365(1542):945–959. doi: 10.1098/rstb.2009.0209. PubMed DOI PMC
Russo L., Massei G., Genov P. Daily home range and activity of wild boar in a Mediterranean area free from hunting. Ethology Ecology & Evolution. 2010:287–294. doi: 10.1080/08927014.1997.9522888. July 1997. DOI
Rutz C. Studying pauses and pulses in human mobility and their environmental impacts. Nat. Rev. Earth Environ. 2022;3:157–159. doi: 10.1038/s43017-022-00276-x. DOI
Rutz C., Loretto M.-C., Bates A.E., Davidson S.C., Duarte C.M., Jetz W., Johnson M., Kato A., Kays R., Mueller T., Primack R.B., Ropert-Coudert Y., Tucker M.A., Wikelski M., Cagnacci F. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 2020;4:1156–1159. PubMed
Said M.Y., Ogutu J.O., Kifugo S.C., Makui O., Reid R.S., de Leeuw J. Effects of extreme land fragmentation on wildlife and livestock population abundance and distribution. J. Nat. Conserv. 2016;34:151–164. doi: 10.1016/j.jnc.2016.10.005. DOI
Scandura Tomasz Podgorski, Vicente Joaquin, Iacolina Laura. In: Handbook of the Mammals of Europe. Hackländer K., Zachos F.E., editors. Springer International Publishing; Cham: 2021. Wild Boar Sus scrofa Linnaeus, 1758; pp. 1–28. DOI
Scholten J., Moe S., Hegland S. Red deer (Cervus elaphus) avoid mountain biking trails. Eur. J. Wildl. Res. 2018;64 doi: 10.1007/s10344-018-1169-y. DOI
Scillitani L., Monaco A., Toso S. Do intensive drive hunts affect wild boar (Sus srofa) spatial behaviour in Italy? Some evidences and management implications. Eur. J. Wildl. Res. 2009;56(3):307–318. doi: 10.1007/s10344-009-0314-z. DOI
Seip D.R., Johnson C.J., Watts G.S. Displacement of mountain Caribou from winter habitat by snowmobiles. J. Wildl. Manag. 2007;71(5):1539–1544. doi: 10.2193/2006-387. DOI
Shi H., Shi T., Yang Z., Wang Z., Han F., Wang C. Effect of roads on ecological corridors used for wildlife movement in a natural heritage site. Sustainability. 2018;10(8):8. doi: 10.3390/su10082725. DOI
Sibbald A.M., Hooper R.J., McLeod J.E., Gordon I.J. Responses of red deer (Cervus elaphus) to regular disturbance by hill walkers. Eur. J. Wildl. Res. 2011;57(4):817–825. doi: 10.1007/s10344-011-0493-2. DOI
Singer F.J., Otto D.K., Tipton A.R., Hable C.P. Home ranges, movements, and habitat use of European wild boar in Tennessee. J. Wildl. Manag. 1981;45(2):343–353. doi: 10.2307/3807917. DOI
Sodeikat G., Pohlmeyer K. Temporary home range modifications of wild boar family groups (Sus scrofa L.) caused by drive hunts in Lower Saxony (Germany) Z. Jagdwiss. 2002;48:161–166.
Sodeikat G., Pohlmeyer K. Escape movements of family groups of wild boar Sus scrofa influenced by drive hunts in Lower Saxony, Germany. Wildlife Biology. 2003;9(4):43–49. doi: 10.2981/wlb.2003.063. DOI
Sodeikat G., Pohlmeyer K. Impact of drive hunts on daytime resting site areas of wild boar family groups (Sus scrofa L.) Wildl. Biol. Pract. 2007;3(1):28–38. doi: 10.2461/wbp.2007.3.4. DOI
Stillfried M., Gras P., Busch M., Börner K., Kramer-Schadt S., Ortmann S. Wild inside: urban wild boar select natural, not anthropogenic food resources. PLoS ONE. 2017;12 PubMed PMC
Thurfjell H., Spong G., Ericsson G. Effects of hunting on wild boar Sus scrofa behaviour. Wildl. Biol. 2013;19(1):87–93. doi: 10.2981/12-027. DOI
Thurfjell H., Spong G., Ericsson G. Effects of weather, season, and daylight on female wild boar movement. Acta Theriol. 2014;59(3):467–472. doi: 10.1007/s13364-014-0185-x. DOI
Tucker M.A., Böhning-Gaese K., Fagan W.F., Fryxell J.M., Van Moorter B., Alberts S.C., Ali A.H., Allen A.M., Attias N., Avgar T., Bartlam-Brooks H., Bayarbaatar B., Belant J.L., Bertassoni A., Beyer D., Bidner L., van Beest F.M., Blake S., Blaum N., Mueller T.… Moving in the anthropocene: global reductions in terrestrial mammalian movements. Science. 2018;359(6374):466–469. doi: 10.1126/science.aam9712. PubMed DOI
Tuomainen U., Candolin U. Behavioural responses to human-induced environmental change. Biol. Rev. 2011;86:640–657. PubMed
Venter Z.S., Barton D.N., Gundersen V., Figari H., Nowell M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environmental Research Letters. 2020;15(10):104075. doi: 10.1088/1748-9326/abb396. DOI
Vitousek P.M., Mooney H.A., Lubchenco J., Melillo J.M. Human domination of Earth's ecosystems. Science. 1997;277(5325):494–499. doi: 10.1126/science.277.5325.494. DOI
vlada.cz Measures adopted by the Czech Government against the coronavirus | Government of the Czech Republic. 2020. https://www.vlada.cz/en/media-centrum/aktualne/measures-adopted-by-the-czech-government-against-coronavirus-180545#general
Voirin B., Scriba M.F., Martinez-Gonzalez D., Vyssotski A.L., Wikelski M., Rattenborg N.C. Ecology and neurophysiology of sleep in two wild sloth species. Sleep. 2014;37:753–761. PubMed PMC
Weed M. The role of the interface of sport and tourism in the response to the COVID-19 pandemic. J. Sport Tour. 2020;24(2):79–92. doi: 10.1080/14775085.2020.1794351. DOI
Wildbyte Technologies Software. 2022. http://www.wildbytetechnologies.com/software.html
Wilson R.P., Börger L., Holton M.D., Scantlebury D.M., Gómez-Laich A., Quintana F., Rosell F., Graf P.M., Williams H., Gunner R., Hopkins L., Marks N., Geraldi N.R., Duarte C.M., Scott R., Strano M.S., Robotka H., Eizaguirre C., Fahlman A., Shepard E.L.C. Estimates for energy expenditure in free-living animals using acceleration proxies: a reappraisal. J. Anim. Ecol. 2020;89:161–172. PubMed PMC
Zaid E., Vyssotski A.L., Lesku J.A. Sleep architecture and regulation of male dusky antechinus, an Australian marsupial. Sleep. 2022;45(8) doi: 10.1093/sleep/zsac114. PubMed DOI PMC
Zukerman Y., Sigal Z., Berger-Tal O. COVID-19 restrictions in a nature reserve reveal the costs of human presence for the threatened Nubian ibex (Capra nubiana) Front. Ecol. Evol. 2021;9 https://www.frontiersin.org/articles/10.3389/fevo.2021.751515 DOI
Odor Fences Have No Effect on Wild Boar Movement and Home Range Size
Experience shapes wild boar spatial response to drive hunts