Odor Fences Have No Effect on Wild Boar Movement and Home Range Size
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
39272341
PubMed Central
PMC11393886
DOI
10.3390/ani14172556
PII: ani14172556
Knihovny.cz E-resources
- Keywords
- African swine fever, GPS telemetry, crop protection, deterrents,
- Publication type
- Journal Article MeSH
Wild boars are an opportunistic wildlife species that has successfully colonized the human-modified landscape in Europe. However, the current population boom has negative consequences, which result in a rapid increase in human-wildlife conflicts and disease transmission, including African swine fever (ASF). The increasing frequency of conflicts requires adequate solutions for these issues through various measures. Application of deterrents is a common non-lethal measure whose effects have been insufficiently verified until recently. Thus, this study aims to evaluate the effectiveness of odor fences, often applied as a barrier against wild boar movement. For this purpose, 18 wild boars were marked with GPS collars. After 22 days of initial monitoring, 12 sections of odor fences were installed on their home ranges. The monitored wild boars crossed the area 20.5 ± 9.2 times during the pre-installation period and 19.9 ± 8.4 times after the odor fence installation. Moreover, the average home range varied between 377.9 ± 185.0 ha before and 378.1 ± 142.2 ha after the odor fence installation. Based on GPS telemetry results, we do not support using odor repellent lines for crop protection or for limiting wild boar movement to lessen ASF outbreaks.
See more in PubMed
Bacigalupo S.A., Chang Y., Dixon L.K., Gubbins S., Kucharski A.J., Drewe J.A. The Importance of Fine-Scale Predictors of Wild Boar Habitat Use in an Isolated Population. Ecol. Evol. 2022;12:e9031. doi: 10.1002/ece3.9031. PubMed DOI PMC
Milda D., Ramesh T., Kalle R., Gayathri V., Thanikodi M., Ashish K. Factors Driving Human–Wild Pig Interactions: Implications for Wildlife Conflict Management in Southern Parts of India. Biol. Invasions. 2023;25:221–235. doi: 10.1007/s10530-022-02911-6. DOI
Massei G., Kindberg J., Licoppe A., Gačić D., Šprem N., Kamler J., Baubet E., Hohmann U., Monaco A., Ozoliņš J., et al. Wild Boar Populations up, Numbers of Hunters down? A Review of Trends and Implications for Europe. Pest Manag. Sci. 2015;71:492–500. doi: 10.1002/ps.3965. PubMed DOI
Drimaj J., Kamler J., Hošek M., Plhal R., Mikulka O., Zeman J., Drápela K. Reproductive Potential of Free-Living Wild Boar in Central Europe. Eur. J. Wildl. Res. 2020;66:75. doi: 10.1007/s10344-020-01416-8. DOI
Gethöffer F., Sodeikat G., Pohlmeyer K. Reproductive Parameters of Wild Boar (Sus scrofa) in Three Different Parts of Germany. Eur. J. Wildl. Res. 2007;53:287–297. doi: 10.1007/s10344-007-0097-z. DOI
Barrios-Garcia M.N., Ballari S.A. Impact of Wild Boar (Sus scrofa) in Its Introduced and Native Range: A Review. Biol. Invasions. 2012;14:2283–2300. doi: 10.1007/s10530-012-0229-6. DOI
Tack J. Wild Boar (Sus scrofa) Populations in Europe. European Landowners’ Organization; Brussels, Belgium: 2018. pp. 29–30. A Scientific Review of Population Trends and Implications for Management.
Vetter S.G., Ruf T., Bieber C., Arnold W. What Is a Mild Winter? Regional Differences in within-Species Responses to Climate Change. PLoS ONE. 2015;10:e0132178. doi: 10.1371/journal.pone.0132178. PubMed DOI PMC
Touzot L., Schermer É., Venner S., Delzon S., Rousset C., Baubet É., Gaillard J.M., Gamelon M. How Does Increasing Mast Seeding Frequency Affect Population Dynamics of Seed Consumers? Wild Boar as a Case Study. Ecol. Appl. 2020;30:e02134. doi: 10.1002/eap.2134. PubMed DOI
Oja R., Kaasik A., Valdmann H. Winter Severity or Supplementary Feeding—Which Matters More for Wild Boar? Acta Theriol. 2014;59:553–559. doi: 10.1007/s13364-014-0190-0. DOI
Pandey P., Shaner P.J.L., Sharma H.P. The Wild Boar as a Driver of Human-Wildlife Conflict in the Protected Park Lands of Nepal. Eur. J. Wildl. Res. 2016;62:103–108. doi: 10.1007/s10344-015-0978-5. DOI
Davoli M., Ghoddousi A., Sabatini F.M., Fabbri E., Caniglia R., Kuemmerle T. Changing Patterns of Conflict between Humans, Carnivores and Crop-Raiding Prey as Large Carnivores Recolonize Human-Dominated Landscapes. Biol. Conserv. 2022;269:109553. doi: 10.1016/j.biocon.2022.109553. DOI
Cwynar P., Stojkov J., Wlazlak K. African Swine Fever Status in Europe. Viruses. 2019;11:3101. doi: 10.3390/v11040310. PubMed DOI PMC
de la Torre A., Bosch J., Sánchez-Vizcaíno J.M., Ito S., Muñoz C., Iglesias I., Avilés M.M. African Swine Fever Survey in a European Context. Pathogens. 2022;11:137. doi: 10.3390/pathogens11020137. PubMed DOI PMC
Alonso C., Borca M., Dixon L., Revilla Y., Rodriguez F., Escribano J.M. ICTV Virus Taxonomy Profile: Asfarviridae. J. Gen. Virol. 2018;99:613–614. doi: 10.1099/jgv.0.001049. PubMed DOI
You S., Liu T., Zhang M., Zhao X., Dong Y., Wu B., Wang Y., Li J., Wei X., Shi B. African Swine Fever Outbreaks in China Led to Gross Domestic Product and Economic Losses. Nat. Food. 2021;2:802–808. doi: 10.1038/s43016-021-00362-1. PubMed DOI
Depner K., Gortazar C., Guberti V., Masiulis M., More S., Olßsevskis E., Thulke H.H., Viltrop A., Wozniakowski G., Abrahantes J.C., et al. Epidemiological Analyses of African Swine Fever in the Baltic States and Poland (Update September 2016–September 2017) EFSA J. 2017;15:e05068. doi: 10.2903/J.EFSA.2017.5068. PubMed DOI PMC
Mason-D’Croz D., Bogard J.R., Herrero M., Robinson S., Sulser T.B., Wiebe K., Willenbockel D., Godfray H.C.J. Modelling the Global Economic Consequences of a Major African Swine Fever Outbreak in China. Nat. Food. 2020;1:221–228. doi: 10.1038/s43016-020-0057-2. PubMed DOI PMC
Mpemba H., Yang F., MacLeod K.J., Wen D., Liu Y., Jiang G. Influences of Predator Cues on the Incidence of Ungulates, Mesopredators and Top Predators in the Greater Khingan Mountains, Northeastern China. Pak. J. Zool. 2023;55:269–280. doi: 10.17582/journal.pjz/20190213140239. DOI
Villalobos A., Schlyter F., Dekker T., Larsson Herrera S., Birgersson G., Löf M. Predator Odor Can Reduce Acorn Removal by Granivorous Rodents in Mixed Oak Forest Stands. For. Ecol. Manag. 2023;548:121411. doi: 10.1016/j.foreco.2023.121411. DOI
Wang Z.N., Wang H., Shen Y.Z., Li F.K., Xiao J.X., Yang Y., Lv S.J. Behavioural and Physiological Responses of Small Tail Han Sheep to Predators. Animal. 2023;17:100884. doi: 10.1016/j.animal.2023.100884. PubMed DOI
Verschut T.A., Carlsson M.A., Hambäck P.A. Scaling the Interactive Effects of Attractive and Repellent Odours for Insect Search Behaviour. Sci. Rep. 2019;9:15309. doi: 10.1038/s41598-019-51834-1. PubMed DOI PMC
Schlageter A., Haag-Wackernagel D. Evaluation of an Odor Repellent for Protecting Crops from Wild Boar Damage. J. Pest Sci. 2012;85:209–215. doi: 10.1007/s10340-012-0415-4. DOI
Bíl M., Andrášik R., Bartonička T., Křivánková Z., Sedoník J. An Evaluation of Odor Repellent Effectiveness in Prevention of Wildlife-Vehicle Collisions. J. Environ. Manag. 2018;205:209–214. doi: 10.1016/j.jenvman.2017.09.081. PubMed DOI
Walter W.D., Lavelle M.J., Fischer J.W., Johnson T.L., Hygnstrom S.E., VerCauteren K.C. Management of Damage by Elk (Cervus elaphus) in North America: A Review. Wildl. Res. 2010;37:630–646. doi: 10.1071/WR10021. DOI
Bíl M., Kušta T., Andrášik R., Cícha V., Brodská H., Jezek M., Keken Z. No Clear Effect of Odour Repellents on Roe Deer Behaviour in the Vicinity of Roads. Wildl. Biol. 2020;2020:1–11. doi: 10.2981/wlb.00744. DOI
Zamojska J., Bandyk A., Olejarski P. Results of the Monitoring of the Effectiveness of Repellents against Wild Boar in the Fields. Prog. Plant Prot. 2014;54:159–162. doi: 10.14199/ppp-2014-025. DOI
Elmeros M., Winbladh J.K., Andersen P.N., Madsen A.B., Christensen J.T. Effectiveness of Odour Repellents on Red Deer (Cervus elaphus) and Roe Deer (Capreolus capreolus): A Field Test. Eur. J. Wildl. Res. 2011;57:1223–1226. doi: 10.1007/s10344-011-0517-y. DOI
Santilli F., Mori L., Galardi L. Evaluation of Three Repellents for the Prevention of Damage to Olive Seedlings by Deer. Eur. J. Wildl. Res. 2004;50:85–89. doi: 10.1007/s10344-004-0036-1. DOI
Sullivan T.P., Crump D.R., Sullivan D.S. Use of Predator Odors as Repellents to Reduce Feeding Damage by Herbivores—IV. Northern Pocket Gophers (Thomomys talpoides) J. Chem. Ecol. 1988;14:379–389. doi: 10.1007/BF01022553. PubMed DOI
Kušta T., Keken Z., Ježek M., Kůta Z. Effectiveness and Costs of Odor Repellents in Wildlife-Vehicle Collisions: A Case Study in Central Bohemia, Czech Republic. Transp. Res. Part D Transp. Environ. 2015;38:1–5. doi: 10.1016/j.trd.2015.04.017. DOI
Ascensão F., Barrientos R., D’Amico M. Wildlife Collisions Put a Dent in Road Safety. Science. 2021;374:1208. doi: 10.1126/science.abm8468. PubMed DOI
More S., Miranda M.A., Bicout D., Bøtner A., Butterworth A., Calistri P., Edwards S., Garin-Bastuji B., Good M., Michel V., et al. African Swine Fever in Wild Boar. EFSA J. 2018;16:e05344. PubMed PMC
Smith G.C., Brough T., Podgórski T., Ježek M., Šatrán P., Vaclavek P., Delahay R. Defining and Testing a Wildlife Intervention Framework for Exotic Disease Control. Ecol. Solut. Evid. 2022;3:e12192. doi: 10.1002/2688-8319.12192. DOI
Olejarz A., Faltusová M., Börger L., Güldenpfennig J., Jarský V., Ježek M., Mortlock E., Silovský V., Podgórski T. Worse Sleep and Increased Energy Expenditure yet No Movement Changes in Sub-Urban Wild Boar Experiencing an Influx of Human Visitors (Anthropulse) during the COVID-19 Pandemic. Sci. Total Environ. 2023;879:163106. doi: 10.1016/j.scitotenv.2023.163106. PubMed DOI PMC
Bíl M., Sedoník J., Andrášik R., Kušta T., Keken Z. Olfactory Repellents Decrease the Number of Ungulate-Vehicle Collisions on Roads: Results of a Two-Year Carcass Study. J. Environ. Manag. 2024;365:121561. doi: 10.1016/j.jenvman.2024.121561. PubMed DOI
QGIS Development Team QGIS Geographic Information System (Version 3.36) 2024. [(accessed on 1 September 2024)]. Open Source Geospatial Foundation Project. Available online: https://qgis.org/
R Core Team . R: A Language and Environment for Statistical Computing (Version 4.2.2.) R Foundation for Statistical Computing; Vienna, Austria: 2020. [(accessed on 1 September 2024)]. Available online: https:///www.R-project.org/
Bates D., Mächler M., Bolker B.M., Walker S.C. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015;67:48. doi: 10.18637/jss.v067.i01. DOI
Kuznetsova A., Brockhoff P.B., Christensen R.H.B. LmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017;82:1–26. doi: 10.18637/jss.v082.i13. DOI
Jori F., Massei G., Licoppe A., Ruiz-Fons F., Linden A., Václavek P., Chenais E., Rosell C. Management of wild boar populations in the European Union before and during the ASF crisis. In: Iacolina L., Penrith M.-L., Bellini S., Chenais E., Jori F., Montoya M., Ståhl K., Gavier-Widén D., editors. Understanding and Combatting African Swine Fever: A European perspective. Wageningen Academic Publishers; Wageningen, The Netherlands: 2021.
Iacolina L., Scandura M., Bongi P., Apollonio M. Nonkin Associations in Wild Boar Social Units. J. Mammal. 2009;90:666–674. doi: 10.1644/08-MAMM-A-074R1.1. DOI
Massei G., Genov P.V., Staines B.W., Gorman M.L. Factors Influencing Home Range and Activity of Wild Boar (Sus scrofa) in a Mediterranean Coastal Area. J. Zool. 1997;242:411–423. doi: 10.1111/j.1469-7998.1997.tb03845.x. DOI
Cavazza S., Brogi R., Apollonio M. Sex-Specific Seasonal Variations of Wild Boar Distance Traveled and Home Range Size. Curr. Zool. 2023;70:284–290. doi: 10.1093/cz/zoad021. PubMed DOI PMC
Russo L., Massei G., Genov P.V. Daily Home Range and Activity of Wild Boar in a Mediterranean Area Free from Hunting. Ethol. Ecol. Evol. 1997;9:287–294. doi: 10.1080/08927014.1997.9522888. DOI
Benten A., Hothorn T., Vor T., Ammer C. Wildlife Warning Reflectors Do Not Mitigate Wildlife–Vehicle Collisions on Roads. Accid. Anal. Prev. 2018;120:64–73. doi: 10.1016/j.aap.2018.08.003. PubMed DOI
Schlageter A., Haag-Wackernagel D. Effectiveness of Solar Blinkers as a Means of Crop Protection from Wild Boar Damage. Crop Prot. 2011;30:1216–1222. doi: 10.1016/j.cropro.2011.05.008. DOI
Eguchi Y., Tanida H., Tanaka T., Yoshimoto T. Color Discrimination in Wild Boars. J. Ethol. 1997;15:1–7. doi: 10.1007/BF02767320. DOI
Denzin N., Helmstädt F., Probst C., Conraths F.J. Testing Different Deterrents as Candidates for Short-Term Reduction in Wild Boar Contacts—A Pilot Study. Animals. 2020;10:2156. doi: 10.3390/ani10112156. PubMed DOI PMC
Desmecht D., Gerbier G., Gortázar Schmidt C., Grigaliuniene V., Helyes G., Kantere M., Korytarova D., Linden A., Miteva A., Neghirla I., et al. Epidemiological Analysis of African Swine Fever in the European Union (September 2019 to August 2020) EFSA J. 2021;19:e06572. doi: 10.2903/j.efsa.2021.6572. PubMed DOI PMC
Palencia P., Blome S., Brook R.K., Ferroglio E., Jo Y.S., Linden A., Montoro V., Penrith M.L., Plhal R., Vicente J., et al. Tools and Opportunities for African Swine Fever Control in Wild Boar and Feral Pigs: A Review. Eur. J. Wildl. Res. 2023;69:1–22. doi: 10.1007/s10344-023-01696-w. DOI
Mysterud A., Rolandsen C.M. Fencing for Wildlife Disease Control. J. Appl. Ecol. 2019;56:519–525. doi: 10.1111/1365-2664.13301. DOI
Vercauteren K.C., Lavelle M.J., Hygnstrom S. Fences and Deer-Damage Management: A Review of Designs and Efficacy. Wildl. Soc. Bull. 2006;34:191–200. doi: 10.2193/0091-7648(2006)34[191:FADMAR]2.0.CO;2. DOI
Cukor J., Linda R., Mahlerová K., Vacek Z., Faltusová M., Marada P., Havránek F., Hart V. Different Patterns of Human Activities in Nature during COVID-19 Pandemic and African Swine Fever Outbreak Confirm Direct Impact on Wildlife Disruption. Sci. Rep. 2021;11:20791. doi: 10.1038/s41598-021-99862-0. PubMed DOI PMC