crop protection
Dotaz
Zobrazit nápovědu
Proceedings series
519 s.
- Konspekt
- Farmacie. Farmakologie
- NLK Obory
- environmentální vědy
- zemědělství a potravinářství
- toxikologie
5th ed 593 s.
- MeSH
- manuály jako téma MeSH
- pesticidy MeSH
- toxické účinky MeSH
- Publikační typ
- příručky MeSH
- Konspekt
- Veřejné zdraví a hygiena
- NLK Obory
- chemie, klinická chemie
- zemědělství a potravinářství
Ciba Foundation symposium ; 177
1st ed. X, 285 s. : tab., obr., grafy, mapy, přeruš. lit., rejstř. ; 22 cm
- MeSH
- zásobování potravinami MeSH
- zemědělství MeSH
- Publikační typ
- kongresy MeSH
- Konspekt
- Zemědělství a příbuzné oblasti vědy a techniky
- NLK Obory
- zemědělství a potravinářství
The Bohemian Forest Ecosystem encompasses various wildlife management systems. Two large, contiguous national parks (one in Germany and one in the Czech Republic) form the centre of the area, are surrounded by private hunting grounds, and hunting regulations in each country differ. Here we aimed at unravelling the influence of management-related and environmental factors on the distribution of red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in this ecosystem. We used the standing crop method based on counts of pellet groups, with point counts every 100 m along 218 randomly distributed transects. Our analysis, which accounted for overdispersion as well as zero inflation and spatial autocorrelation, corroborated the view that both human management and the physical and biological environment drive ungulate distribution in mountainous areas in Central Europe. In contrast to our expectations, protection by national parks was the least important variable for red deer and the third important out of four variables for roe deer; protection negatively influenced roe deer distribution in both parks and positively influenced red deer distribution in Germany. Country was the most influential variable for both red and roe deer, with higher counts of pellet groups in the Czech Republic than in Germany. Elevation, which indicates increasing environmental harshness, was the second most important variable for both species. Forest cover was the least important variable for roe deer and the third important variable for red deer; the relationship for roe deer was positive and linear, and optimal forest cover for red deer was about 70% within a 500 m radius. Our results have direct implications for the future conservation management of deer in protected areas in Central Europe and show in particular that large non-intervention zones may not cause agglomerations of deer that could lead to conflicts along the border of protected, mountainous areas.
- MeSH
- lesy * MeSH
- lidé MeSH
- veřejné parky * MeSH
- vysoká zvěř * MeSH
- zachování přírodních zdrojů * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Německo MeSH
Abiotic stresses, including drought, salinity, extreme temperature, and pollutants, are the main cause of crop losses worldwide. Novel climate-adapted crops and stress tolerance-enhancing compounds are increasingly needed to counteract the negative effects of unfavorable stressful environments. A number of natural products and synthetic chemicals can protect model and crop plants against abiotic stresses through induction of molecular and physiological defense mechanisms, a process known as molecular priming. In addition to their stress-protective effect, some of these compounds can also stimulate plant growth. Here, we provide an overview of the known physiological and molecular mechanisms that induce molecular priming, together with a survey of the approaches aimed to discover and functionally study new stress-alleviating chemicals.
An increasing demand for environmentally acceptable alternative for traditional pesticides provides an impetus to conceive new bio-based strategies in crop protection. Employing induced resistance is one such strategy, consisting of boosting the natural plant immunity. Upon infections, plants defend themselves by activating their immune mechanisms. These are initiated after the recognition of an invading pathogen via the microbe-associated molecular patterns (MAMPs) or other microbe-derived molecules. Triggered responses inhibit pathogen spread from the infected site. Systemic signal transport even enables to prepare, i.e. prime, distal uninfected tissues for more rapid and enhanced response upon the consequent pathogen attack. Similar defense mechanisms can be triggered by purified MAMPs, pathogen-derived molecules, signal molecules involved in plant resistance to pathogens, such as salicylic and jasmonic acid, or a wide range of other chemical compounds. Induced resistance can be also conferred by plant-associated microorganisms, including beneficial bacteria or fungi. Treatment with resistance inducers or beneficial microorganisms provides long-lasting resistance for plants to a wide range of pathogens. This study surveys current knowledge on resistance and its mechanisms provided by microbe-, algae- and plant-derived elicitors in different crops. The main scope deals with bacterial substances and fungus-derived molecules chitin and chitosan and algae elicitors, including naturally sulphated polysaccharides such as ulvans, fucans or carageenans. Recent advances in the utilization of this strategy in practical crop protection are also discussed.
Sustainability and a more environment-friendly approach is an emerging issue relevant to crop production. Abiotic stresses like drought, salinity, heat, cold or heavy metal pollution can severely compromise yields, and in this respect, plant protection practices should be highly efficient as well as safe for the environment and people. Among the many ways to achieve high productivity of healthy, safe and tasty food, the use of beneficial micro-organisms as biostimulants is the most promising one. Two types of soil fungi can be considered efficient natural plants stimulants: arbuscular mycorrhizal fungi (AMF) and Trichoderma spp. (TR). Generally, most investigations indicated AMF and TR were effective, as well as safe, for use as natural biopreparations dedicated to horticultural crops, although some reports pointed to their negative impact on plants. This review focuses on the mutual interaction of AMF and TR, as well as complex relationships with plants analysed on a multidimensional level: biochemical, morphological, ecological and agrotechnical. AMF and TR were found to be effective elicitors of root system development, nutrient uptake, plant stress response and production of secondary metabolites. As natural plant stimulants, beneficial fungi are compatible with modern trends of crop management, environmental conservation and functional food production. Herein, we demonstrate the advantages and disadvantages of AMF and TR use in horticulture and their prospects, as well as the points that need further exploring.
Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.
- MeSH
- biologická adaptace * genetika MeSH
- biologické markery MeSH
- fyziologický stres * genetika MeSH
- genotyp MeSH
- proteom * MeSH
- proteomika * metody MeSH
- rostlinné proteiny genetika metabolismus MeSH
- zemědělské plodiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH