• This record comes from PubMed

Wild Boar Proves High Tolerance to Human-Caused Disruptions: Management Implications in African Swine Fever Outbreaks

. 2024 Sep 19 ; 14 (18) : . [epub] 20240919

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Currently, African swine fever (ASF), a highly fatal disease has become pervasive, with outbreaks recorded across European countries, leading to preventative measures to restrict wild boar (Sus scrofa L.) movement, and, therefore, keep ASF from spreading. This study aims to detail how specific human activities-defined as "car", "dog", "chainsaw", and "tourism"-affect wild boar behavior, considering the disturbance proximity, and evaluate possible implications for wild boar management in ASF-affected areas. Wild boar behavior was studied using advanced biologging technology. This study tracks and analyzes wild boar movements and behavioral responses to human disturbances. This study utilizes the dead reckoning method to precisely reconstruct the animal movements and evaluate behavioral changes based on proximity to disturbances. The sound of specific human activities was reproduced for telemetered animals from forest roads from different distances. Statistical analyses show that wild boars exhibit increased vigilance and altered movement patterns in response to closer human activity, but only in a small number of cases and with no significantly longer time scale. The relative representation of behaviors after disruption confirmed a high instance of resting behavior (83%). Running was the least observed reaction in only 0.9% of all cases. The remaining reactions were identified as foraging (5.1%), walking (5.0%), standing (2.2%), and other (3.8%). The findings suggest that while human presence and activities do influence wild boar behavior, adherence to movement restrictions and careful management of human activity in ASF-infected areas is not a necessary measure if human movement is limited to forest roads.

See more in PubMed

Jori F., Massei G., Licoppe A., Linden A., Václavek P., Chenais E. Understanding and Combatting African Swine Fever. Wageningen Academic Publishers; Wageningen, The Netherlands: 2021.

Tack J. A Scientific Review of Population Trends and Implications for Management. European Landowners’ Organization; Brussels, Belgium: 2018. Wild Boar (Sus scrofa) Populations in Europe; pp. 29–30.

Sáaez-Royuela C., Telleríia J.L. The Increased Population of the Wild Boar (Sus scrofa L.) in Europe. Mamm. Rev. 1986;16:97–101. doi: 10.1111/j.1365-2907.1986.tb00027.x. DOI

Frauendorf M., Gethöffer F., Siebert U., Keuling O. The Influence of Environmental and Physiological Factors on the Litter Size of Wild Boar (Sus scrofa) in an Agriculture Dominated Area in Germany. Sci. Total Environ. 2016;541:877–882. doi: 10.1016/j.scitotenv.2015.09.128. PubMed DOI

Faltusová M., Ježek M., Ševčík R., Silovský V., Cukor J. Odor Fences Have No Effect on Wild Boar Movement and Home Range Size. Animals. 2024;14:2556. doi: 10.3390/ani14172556. PubMed DOI PMC

Vetter S.G., Ruf T., Bieber C., Arnold W. What Is a Mild Winter? Regional Differences in within-Species Responses to Climate Change. PLoS ONE. 2015;10:e0132178. doi: 10.1371/journal.pone.0132178. PubMed DOI PMC

Bieber C., Ruf T. Population Dynamics in Wild Boar Sus scrofa: Ecology, Elasticity of Growth Rate and Implications for the Management of Pulsed Resource Consumers. J. Appl. Ecol. 2005;42:1203–1213. doi: 10.1111/j.1365-2664.2005.01094.x. DOI

Keuling O., Podgórski T., Monaco A., Melletti M., Merta D., Albrycht M., Genov P.V., Gethöffer F., Vetter S.G., Jori F., et al. Eurasian Wild Boar Sus scrofa (Linnaeus, 1758) Cambridge University Press; Cambridge, UK: 2017. Ecology, conservation and management of wild pigs and peccaries.

Touzot L., Schermer É., Venner S., Delzon S., Rousset C., Baubet É., Gaillard J.M., Gamelon M. How Does Increasing Mast Seeding Frequency Affect Population Dynamics of Seed Consumers? Wild Boar as a Case Study. Ecol. Appl. 2020;30:e02134. doi: 10.1002/eap.2134. PubMed DOI

Cwynar P., Stojkov J., Wlazlak K. African Swine Fever Status in Europe. Viruses. 2019;11:310. doi: 10.3390/v11040310. PubMed DOI PMC

Carpio A.J., Apollonio M., Acevedo P. Wild Ungulate Overabundance in Europe: Contexts, Causes, Monitoring and Management Recommendations. Mamm. Rev. 2021;51:95–108. doi: 10.1111/mam.12221. DOI

Chenais E., Depner K., Guberti V., Dietze K., Viltrop A., Ståhl K. Epidemiological Considerations on African Swine Fever in Europe 2014–2018. Porc. Health Manag. 2019;5:6. doi: 10.1186/s40813-018-0109-2. PubMed DOI PMC

Mur L., Atzeni M., Martínez-López B., Feliziani F., Rolesu S., Sanchez-Vizcaino J.M. Thirty-Five-Year Presence of African Swine Fever in Sardinia: History, Evolution and Risk Factors for Disease Maintenance. Transbound. Emerg. Dis. 2016;63:e165–e177. doi: 10.1111/tbed.12264. PubMed DOI

Cukor J., Linda R., Václavek P., Šatrán P., Mahlerová K., Vacek Z., Kunca T., Havránek F. Wild Boar Deathbed Choice in Relation to ASF: Are There Any Differences between Positive and Negative Carcasses? Prev. Vet. Med. 2020;177:104943. doi: 10.1016/j.prevetmed.2020.104943. PubMed DOI

Sauter-Louis C., Conraths F.J., Probst C., Blohm U., Schulz K., Sehl J., Fischer M., Forth J.H., Zani L., Depner K., et al. African Swine Fever in Wild Boar in Europe—A Review. Viruses. 2021;13:1717. doi: 10.3390/v13091717. PubMed DOI PMC

Jarynowski A., Platek D., Krzowski Ł., Gerylovich A., Belik V. African Swine Fever-Potential Biological Warfare Threat. 2019. [(accessed on 24 April 2024)]. Available online: https://www.afisapr.org.br/attachments/article/1895/EasyChair-Preprint-1904.pdf.

Linden A., Licoppe A., Volpe R., Paternostre J., Lesenfants C., Cassart D., Garigliany M., Tignon M., van den Berg T., Desmecht D., et al. Summer 2018: African Swine Fever Virus Hits North-Western Europe. Transbound. Emerg. Dis. 2019;66:54–55. doi: 10.1111/tbed.13047. PubMed DOI

Szymańska E.J., Dziwulaki M. Development of African Swine Fever in Poland. Agriculture. 2022;12:119. doi: 10.3390/agriculture12010119. DOI

Juszkiewicz M., Walczak M., Woźniakowski G., Podgórska K. African Swine Fever: Transmission, Spread, and Control through Biosecurity and Disinfection, Including Polish Trends. Viruses. 2023;15:2275. doi: 10.3390/v15112275. PubMed DOI PMC

Morelle K., Jezek M., Licoppe A., Podgorski T. Deathbed Choice by ASF-Infected Wild Boar Can Help Find Carcasses. Transbound. Emerg. Dis. 2019;66:1821–1826. doi: 10.1111/tbed.13267. PubMed DOI

Cukor J., Linda R., Mahlerová K., Vacek Z., Faltusová M., Marada P., Havránek F., Hart V. Different Patterns of Human Activities in Nature during Covid-19 Pandemic and African Swine Fever Outbreak Confirm Direct Impact on Wildlife Disruption. Sci. Rep. 2021;11:20791. doi: 10.1038/s41598-021-99862-0. PubMed DOI PMC

Dellicour S., Desmecht D., Paternostre J., Malengreaux C., Licoppe A., Gilbert M., Linden A. Unravelling the Dispersal Dynamics and Ecological Drivers of the African Swine Fever Outbreak in Belgium. J. Appl. Ecol. 2020;57:1619–1629. doi: 10.1111/1365-2664.13649. DOI

Martin J.G.A., Réale D. Animal Temperament and Human Disturbance: Implications for the Response of Wildlife to Tourism. Behav. Process. 2008;77:66–72. doi: 10.1016/j.beproc.2007.06.004. PubMed DOI

Scheijen C.P.J., van der Merwe S., Ganswindt A., Deacon F. Anthropogenic Influences on Distance Traveled and Vigilance Behavior and Stress-Related Endocrine Correlates in Free-Roaming Giraffes. Animals. 2021;11:1239. doi: 10.3390/ani11051239. PubMed DOI PMC

Ohashi H., Saito M., Horie R., Tsunoda H., Noba H., Ishii H., Kuwabara T., Hiroshige Y., Koike S., Hoshino Y., et al. Differences in the Activity Pattern of the Wild Boar Sus scrofa Related to Human Disturbance. Eur. J. Wildl. Res. 2013;59:167–177. doi: 10.1007/s10344-012-0661-z. DOI

Pickering C.M., Hill W., Newsome D., Leung Y.F. Comparing Hiking, Mountain Biking and Horse Riding Impacts on Vegetation and Soils in Australia and the United States of America. J. Environ. Manag. 2010;91:551–562. doi: 10.1016/j.jenvman.2009.09.025. PubMed DOI

Tolvanen A., Kangas K. Tourism, Biodiversity and Protected Areas—Review from Northern Fennoscandia. J. Environ. Manag. 2016;169:58–66. doi: 10.1016/j.jenvman.2015.12.011. PubMed DOI

Fischer L.K., Kowarik I. Dogwalkers’ Views of Urban Biodiversity across Five European Cities. Sustainability. 2020;12:3507. doi: 10.3390/su12093507. DOI

Uchida K., Blumstein D.T. Habituation or Sensitization? Long-Term Responses of Yellow-Bellied Marmots to Human Disturbance. Behav. Ecol. 2021;32:668–678. doi: 10.1093/beheco/arab016. DOI

Hawkins E., Papworth S. Little Evidence to Support the Risk–Disturbance Hypothesis as an Explanation for Responses to Anthropogenic Noise by Pygmy Marmosets (Cebuella niveiventris) at a Tourism Site in the Peruvian Amazon. Int. J. Primatol. 2022;43:1110–1132. doi: 10.1007/s10764-022-00297-9. PubMed DOI PMC

Tablado Z., Jenni L. Determinants of Uncertainty in Wildlife Responses to Human Disturbance. Biol. Rev. 2017;92:216–233. doi: 10.1111/brv.12224. PubMed DOI

Skarin A., Åhman B. Do Human Activity and Infrastructure Disturb Domesticated Reindeer? The Need for the Reindeer’s Perspective. Polar Biol. 2014;37:1041–1054. doi: 10.1007/s00300-014-1499-5. DOI

Hebblewhite M., Haydon D.T. Distinguishing Technology from Biology: A Critical Review of the Use of GPS Telemetry Data in Ecology. Philos. Trans. R. Soc. B Biol. Sci. 2010;365:2303–2312. doi: 10.1098/rstb.2010.0087. PubMed DOI PMC

Shepard E.L.C., Wilson R.P., Halsey L.G., Quintana F., Laich A.G., Gleiss A.C., Liebsch N., Myers A.E., Norman B. Derivation of Body Motion via Appropriate Smoothing of Acceleration Data. Aquat. Biol. 2008;4:235–241. doi: 10.3354/ab00104. DOI

Williams H.J., Holton M.D., Shepard E.L.C., Largey N., Norman B., Ryan P.G., Duriez O., Scantlebury M., Quintana F., Magowan E.A., et al. Identification of Animal Movement Patterns Using Tri-Axial Magnetometry. Mov. Ecol. 2017;5:6. doi: 10.1186/s40462-017-0097-x. PubMed DOI PMC

Wilson R.P., Shepard E.L.C., Liebsch N. Prying into the Intimate Details of Animal Lives: Use of a Daily Diary on Animals. Endanger. Species Res. 2008;4:123–137. doi: 10.3354/esr00064. DOI

Wilson R.P., Liebsch N., Davies I.M., Quintana F., Weimerskirch H., Storch S., Lucke K., Siebert U., Zankl S., Müller G., et al. All at Sea with Animal Tracks; Methodological and Analytical Solutions for the Resolution of Movement. Deep. Res. Part II Top. Stud. Oceanogr. 2007;54:193–210. doi: 10.1016/j.dsr2.2006.11.017. DOI

Wilson R.P., Rose K.A.R., Metcalfe R.S., Holton M.D., Redcliffe J., Gunner R., Börger L., Loison A., Jezek M., Painter M.S., et al. Path Tortuosity Changes the Transport Cost Paradigm in Terrestrial Animals. Ecography. 2021;44:1524–1532. doi: 10.1111/ecog.05850. DOI

Walker J.S., Jones M.W., Laramee R.S., Holton M.D., Shepard E.L.C., Williams H.J., Michael Scantlebury D., Marks N.J., Magowan E.A., Maguire I.E., et al. Prying into the Intimate Secrets of Animal Lives; Software beyond Hardware for Comprehensive Annotation in ‘Daily Diary’ Tags. Mov. Ecol. 2015;3:29. doi: 10.1186/s40462-015-0056-3. PubMed DOI PMC

Painter M.S., Blanco J.A., Malkemper E.P., Anderson C., Sweeney D.C., Hewgley C.W., Červený J., Hart V., Topinka V., Belotti E., et al. Use of Bio-Loggers to Characterize Red Fox Behavior with Implications for Studies of Magnetic Alignment Responses in Free-Roaming Animals. Anim. Biotelemetry. 2016;4:20. doi: 10.1186/s40317-016-0113-8. DOI

Bosch J., Rodríguez A., Iglesias I., Muñoz M.J., Jurado C., Sánchez-Vizcaíno J.M., de la Torre A. Update on the Risk of Introduction of African Swine Fever by Wild Boar into Disease-Free European Union Countries. Transbound. Emerg. Dis. 2017;64:1424–1432. doi: 10.1111/tbed.12527. PubMed DOI

More S., Miranda M.A., Bicout D., Bøtner A., Butterworth A., Calistri P., Edwards S., Garin-Bastuji B., Good M., Michel V., et al. African Swine Fever in Wild Boar. EFSA J. 2018;16:e05344. PubMed PMC

Podgórski T., Śmietanka K. Do Wild Boar Movements Drive the Spread of African Swine Fever? Transbound. Emerg. Dis. 2018;65:1588–1596. doi: 10.1111/tbed.12910. PubMed DOI

Probst C., Globig A., Knoll B., Conraths F.J., Depner K. Behaviour of Free Ranging Wild Boar towards Their Dead Fellows: Potential Implications for the Transmission of African Swine Fever. R. Soc. Open Sci. 2017;4:170054. doi: 10.1098/rsos.170054. PubMed DOI PMC

Cukor J., Linda R., Václavek P., Mahlerová K., Šatrán P., Havránek F. Confirmed Cannibalism in Wild Boar and Its Possible Role in African Swine Fever Transmission. Transbound. Emerg. Dis. 2020;67:1068–1073. doi: 10.1111/tbed.13468. PubMed DOI

Desmecht D., Gerbier G., Gortázar Schmidt C., Grigaliuniene V., Helyes G., Kantere M., Korytarova D., Linden A., Miteva A., Neghirla I., et al. Epidemiological Analysis of African Swine Fever in the European Union (September 2019 to August 2020) EFSA J. 2021;19:e06572. doi: 10.2903/j.efsa.2021.6572. PubMed DOI PMC

Dei Giudici S., Loi F., Ghisu S., Angioi P.P., Zinellu S., Fiori M.S., Carusillo F., Brundu D., Franzoni G., Zidda G.M., et al. The Long-Jumping of African Swine Fever: First Genotype II Notified in Sardinia, Italy. Viruses. 2024;16:32. doi: 10.3390/v16010032. PubMed DOI PMC

Gervasi V., Sordilli M., Loi F., Guberti V. Estimating the Directional Spread of Epidemics in Their Early Stages Using a Simple Regression Approach: A Study on African Swine Fever in Northern Italy. Pathogens. 2023;12:812. doi: 10.3390/pathogens12060812. PubMed DOI PMC

Podgórski T., Baś G., Jȩdrzejewska B., Sönnichsen L., Śniezko S., Jȩdrzejewski W., Okarma H. Spatiotemporal Behavioral Plasticity of Wild Boar (Sus scrofa) under Contrasting Conditions of Human Pressure: Primeval Forest and Metropolitan Area. J. Mammal. 2013;94:109–119. doi: 10.1644/12-MAMM-A-038.1. DOI

Csókás A., Schally G., Szabó L., Csányi S., Kovács F., Heltai M. Space Use of Wild Boar (Sus scrofa) in Budapest: Are They Resident or Transient City Dwellers? Biol. Futur. 2020;71:39–51. doi: 10.1007/s42977-020-00010-y. PubMed DOI

Castillo-Contreras R., Carvalho J., Serrano E., Mentaberre G., Fernández-Aguilar X., Colom A., González-Crespo C., Lavín S., López-Olvera J.R. Urban Wild Boars Prefer Fragmented Areas with Food Resources near Natural Corridors. Sci. Total Environ. 2018;615:282–288. doi: 10.1016/j.scitotenv.2017.09.277. PubMed DOI

Ciuti S., Northrup J.M., Muhly T.B., Simi S., Musiani M., Pitt J.A., Boyce M.S. Effects of Humans on Behaviour of Wildlife Exceed Those of Natural Predators in a Landscape of Fear. PLoS ONE. 2012;7:e50611. doi: 10.1371/journal.pone.0050611. PubMed DOI PMC

Scillitani L., Monaco A., Toso S. Do Intensive Drive Hunts Affect Wild Boar (Sus scrofa) Spatial Behaviour in Italy? Some Evidences and Management Implications. Eur. J. Wildl. Res. 2010;56:307–318. doi: 10.1007/s10344-009-0314-z. DOI

Drimaj J., Kamler J., Plhal R., Janata P., Adamec Z., Homolka M. Intensive Hunting Pressure Changes Local Distribution of Wild Boar. Hum.-Wildl. Interact. 2021;15:22–31. doi: 10.26077/b792-8211. DOI

Keuling O., Massei G. Does Hunting Affect the Behavior of Wild Pigs? Hum.-Wildl. Interact. 2021;15:44–55. doi: 10.26077/3a83-9155. DOI

Guinat C., Vergne T., Jurado-Diaz C., Sánchez-Vizcaíno J.M., Dixon L., Pfeiffer D.U. Scientific Opinion on African Swine Fever. EFSA J. 2010;8:97. doi: 10.2903/j.efsa.2010.1556. PubMed DOI PMC

Guinat C., Vergne T., Jurado-Diaz C., Sánchez-Vizcaíno J.M., Dixon L., Pfeiffer D.U. Effectiveness and Practicality of Control Strategies for African Swine Fever: What Do We Really Know? Vet. Rec. 2017;180:97. doi: 10.1136/vr.103992. PubMed DOI PMC

Miteva A., Papanikolaou A., Gogin A., Boklund A., Bøtner A., Linden A., Viltrop A., Schmidt C.G., Ivanciu C., Desmecht D., et al. Epidemiological Analyses of African Swine Fever in the European Union (November 2018 to October 2019) EFSA J. 2020;18:e05996. doi: 10.2903/j.efsa.2020.5996. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...