Wild Boar Proves High Tolerance to Human-Caused Disruptions: Management Implications in African Swine Fever Outbreaks
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
39335299
PubMed Central
PMC11429037
DOI
10.3390/ani14182710
PII: ani14182710
Knihovny.cz E-resources
- Keywords
- anthropogenic disturbances, behavior, biologging, movement, wild boar,
- Publication type
- Journal Article MeSH
Currently, African swine fever (ASF), a highly fatal disease has become pervasive, with outbreaks recorded across European countries, leading to preventative measures to restrict wild boar (Sus scrofa L.) movement, and, therefore, keep ASF from spreading. This study aims to detail how specific human activities-defined as "car", "dog", "chainsaw", and "tourism"-affect wild boar behavior, considering the disturbance proximity, and evaluate possible implications for wild boar management in ASF-affected areas. Wild boar behavior was studied using advanced biologging technology. This study tracks and analyzes wild boar movements and behavioral responses to human disturbances. This study utilizes the dead reckoning method to precisely reconstruct the animal movements and evaluate behavioral changes based on proximity to disturbances. The sound of specific human activities was reproduced for telemetered animals from forest roads from different distances. Statistical analyses show that wild boars exhibit increased vigilance and altered movement patterns in response to closer human activity, but only in a small number of cases and with no significantly longer time scale. The relative representation of behaviors after disruption confirmed a high instance of resting behavior (83%). Running was the least observed reaction in only 0.9% of all cases. The remaining reactions were identified as foraging (5.1%), walking (5.0%), standing (2.2%), and other (3.8%). The findings suggest that while human presence and activities do influence wild boar behavior, adherence to movement restrictions and careful management of human activity in ASF-infected areas is not a necessary measure if human movement is limited to forest roads.
See more in PubMed
Jori F., Massei G., Licoppe A., Linden A., Václavek P., Chenais E. Understanding and Combatting African Swine Fever. Wageningen Academic Publishers; Wageningen, The Netherlands: 2021.
Tack J. A Scientific Review of Population Trends and Implications for Management. European Landowners’ Organization; Brussels, Belgium: 2018. Wild Boar (Sus scrofa) Populations in Europe; pp. 29–30.
Sáaez-Royuela C., Telleríia J.L. The Increased Population of the Wild Boar (Sus scrofa L.) in Europe. Mamm. Rev. 1986;16:97–101. doi: 10.1111/j.1365-2907.1986.tb00027.x. DOI
Frauendorf M., Gethöffer F., Siebert U., Keuling O. The Influence of Environmental and Physiological Factors on the Litter Size of Wild Boar (Sus scrofa) in an Agriculture Dominated Area in Germany. Sci. Total Environ. 2016;541:877–882. doi: 10.1016/j.scitotenv.2015.09.128. PubMed DOI
Faltusová M., Ježek M., Ševčík R., Silovský V., Cukor J. Odor Fences Have No Effect on Wild Boar Movement and Home Range Size. Animals. 2024;14:2556. doi: 10.3390/ani14172556. PubMed DOI PMC
Vetter S.G., Ruf T., Bieber C., Arnold W. What Is a Mild Winter? Regional Differences in within-Species Responses to Climate Change. PLoS ONE. 2015;10:e0132178. doi: 10.1371/journal.pone.0132178. PubMed DOI PMC
Bieber C., Ruf T. Population Dynamics in Wild Boar Sus scrofa: Ecology, Elasticity of Growth Rate and Implications for the Management of Pulsed Resource Consumers. J. Appl. Ecol. 2005;42:1203–1213. doi: 10.1111/j.1365-2664.2005.01094.x. DOI
Keuling O., Podgórski T., Monaco A., Melletti M., Merta D., Albrycht M., Genov P.V., Gethöffer F., Vetter S.G., Jori F., et al. Eurasian Wild Boar Sus scrofa (Linnaeus, 1758) Cambridge University Press; Cambridge, UK: 2017. Ecology, conservation and management of wild pigs and peccaries.
Touzot L., Schermer É., Venner S., Delzon S., Rousset C., Baubet É., Gaillard J.M., Gamelon M. How Does Increasing Mast Seeding Frequency Affect Population Dynamics of Seed Consumers? Wild Boar as a Case Study. Ecol. Appl. 2020;30:e02134. doi: 10.1002/eap.2134. PubMed DOI
Cwynar P., Stojkov J., Wlazlak K. African Swine Fever Status in Europe. Viruses. 2019;11:310. doi: 10.3390/v11040310. PubMed DOI PMC
Carpio A.J., Apollonio M., Acevedo P. Wild Ungulate Overabundance in Europe: Contexts, Causes, Monitoring and Management Recommendations. Mamm. Rev. 2021;51:95–108. doi: 10.1111/mam.12221. DOI
Chenais E., Depner K., Guberti V., Dietze K., Viltrop A., Ståhl K. Epidemiological Considerations on African Swine Fever in Europe 2014–2018. Porc. Health Manag. 2019;5:6. doi: 10.1186/s40813-018-0109-2. PubMed DOI PMC
Mur L., Atzeni M., Martínez-López B., Feliziani F., Rolesu S., Sanchez-Vizcaino J.M. Thirty-Five-Year Presence of African Swine Fever in Sardinia: History, Evolution and Risk Factors for Disease Maintenance. Transbound. Emerg. Dis. 2016;63:e165–e177. doi: 10.1111/tbed.12264. PubMed DOI
Cukor J., Linda R., Václavek P., Šatrán P., Mahlerová K., Vacek Z., Kunca T., Havránek F. Wild Boar Deathbed Choice in Relation to ASF: Are There Any Differences between Positive and Negative Carcasses? Prev. Vet. Med. 2020;177:104943. doi: 10.1016/j.prevetmed.2020.104943. PubMed DOI
Sauter-Louis C., Conraths F.J., Probst C., Blohm U., Schulz K., Sehl J., Fischer M., Forth J.H., Zani L., Depner K., et al. African Swine Fever in Wild Boar in Europe—A Review. Viruses. 2021;13:1717. doi: 10.3390/v13091717. PubMed DOI PMC
Jarynowski A., Platek D., Krzowski Ł., Gerylovich A., Belik V. African Swine Fever-Potential Biological Warfare Threat. 2019. [(accessed on 24 April 2024)]. Available online: https://www.afisapr.org.br/attachments/article/1895/EasyChair-Preprint-1904.pdf.
Linden A., Licoppe A., Volpe R., Paternostre J., Lesenfants C., Cassart D., Garigliany M., Tignon M., van den Berg T., Desmecht D., et al. Summer 2018: African Swine Fever Virus Hits North-Western Europe. Transbound. Emerg. Dis. 2019;66:54–55. doi: 10.1111/tbed.13047. PubMed DOI
Szymańska E.J., Dziwulaki M. Development of African Swine Fever in Poland. Agriculture. 2022;12:119. doi: 10.3390/agriculture12010119. DOI
Juszkiewicz M., Walczak M., Woźniakowski G., Podgórska K. African Swine Fever: Transmission, Spread, and Control through Biosecurity and Disinfection, Including Polish Trends. Viruses. 2023;15:2275. doi: 10.3390/v15112275. PubMed DOI PMC
Morelle K., Jezek M., Licoppe A., Podgorski T. Deathbed Choice by ASF-Infected Wild Boar Can Help Find Carcasses. Transbound. Emerg. Dis. 2019;66:1821–1826. doi: 10.1111/tbed.13267. PubMed DOI
Cukor J., Linda R., Mahlerová K., Vacek Z., Faltusová M., Marada P., Havránek F., Hart V. Different Patterns of Human Activities in Nature during Covid-19 Pandemic and African Swine Fever Outbreak Confirm Direct Impact on Wildlife Disruption. Sci. Rep. 2021;11:20791. doi: 10.1038/s41598-021-99862-0. PubMed DOI PMC
Dellicour S., Desmecht D., Paternostre J., Malengreaux C., Licoppe A., Gilbert M., Linden A. Unravelling the Dispersal Dynamics and Ecological Drivers of the African Swine Fever Outbreak in Belgium. J. Appl. Ecol. 2020;57:1619–1629. doi: 10.1111/1365-2664.13649. DOI
Martin J.G.A., Réale D. Animal Temperament and Human Disturbance: Implications for the Response of Wildlife to Tourism. Behav. Process. 2008;77:66–72. doi: 10.1016/j.beproc.2007.06.004. PubMed DOI
Scheijen C.P.J., van der Merwe S., Ganswindt A., Deacon F. Anthropogenic Influences on Distance Traveled and Vigilance Behavior and Stress-Related Endocrine Correlates in Free-Roaming Giraffes. Animals. 2021;11:1239. doi: 10.3390/ani11051239. PubMed DOI PMC
Ohashi H., Saito M., Horie R., Tsunoda H., Noba H., Ishii H., Kuwabara T., Hiroshige Y., Koike S., Hoshino Y., et al. Differences in the Activity Pattern of the Wild Boar Sus scrofa Related to Human Disturbance. Eur. J. Wildl. Res. 2013;59:167–177. doi: 10.1007/s10344-012-0661-z. DOI
Pickering C.M., Hill W., Newsome D., Leung Y.F. Comparing Hiking, Mountain Biking and Horse Riding Impacts on Vegetation and Soils in Australia and the United States of America. J. Environ. Manag. 2010;91:551–562. doi: 10.1016/j.jenvman.2009.09.025. PubMed DOI
Tolvanen A., Kangas K. Tourism, Biodiversity and Protected Areas—Review from Northern Fennoscandia. J. Environ. Manag. 2016;169:58–66. doi: 10.1016/j.jenvman.2015.12.011. PubMed DOI
Fischer L.K., Kowarik I. Dogwalkers’ Views of Urban Biodiversity across Five European Cities. Sustainability. 2020;12:3507. doi: 10.3390/su12093507. DOI
Uchida K., Blumstein D.T. Habituation or Sensitization? Long-Term Responses of Yellow-Bellied Marmots to Human Disturbance. Behav. Ecol. 2021;32:668–678. doi: 10.1093/beheco/arab016. DOI
Hawkins E., Papworth S. Little Evidence to Support the Risk–Disturbance Hypothesis as an Explanation for Responses to Anthropogenic Noise by Pygmy Marmosets (Cebuella niveiventris) at a Tourism Site in the Peruvian Amazon. Int. J. Primatol. 2022;43:1110–1132. doi: 10.1007/s10764-022-00297-9. PubMed DOI PMC
Tablado Z., Jenni L. Determinants of Uncertainty in Wildlife Responses to Human Disturbance. Biol. Rev. 2017;92:216–233. doi: 10.1111/brv.12224. PubMed DOI
Skarin A., Åhman B. Do Human Activity and Infrastructure Disturb Domesticated Reindeer? The Need for the Reindeer’s Perspective. Polar Biol. 2014;37:1041–1054. doi: 10.1007/s00300-014-1499-5. DOI
Hebblewhite M., Haydon D.T. Distinguishing Technology from Biology: A Critical Review of the Use of GPS Telemetry Data in Ecology. Philos. Trans. R. Soc. B Biol. Sci. 2010;365:2303–2312. doi: 10.1098/rstb.2010.0087. PubMed DOI PMC
Shepard E.L.C., Wilson R.P., Halsey L.G., Quintana F., Laich A.G., Gleiss A.C., Liebsch N., Myers A.E., Norman B. Derivation of Body Motion via Appropriate Smoothing of Acceleration Data. Aquat. Biol. 2008;4:235–241. doi: 10.3354/ab00104. DOI
Williams H.J., Holton M.D., Shepard E.L.C., Largey N., Norman B., Ryan P.G., Duriez O., Scantlebury M., Quintana F., Magowan E.A., et al. Identification of Animal Movement Patterns Using Tri-Axial Magnetometry. Mov. Ecol. 2017;5:6. doi: 10.1186/s40462-017-0097-x. PubMed DOI PMC
Wilson R.P., Shepard E.L.C., Liebsch N. Prying into the Intimate Details of Animal Lives: Use of a Daily Diary on Animals. Endanger. Species Res. 2008;4:123–137. doi: 10.3354/esr00064. DOI
Wilson R.P., Liebsch N., Davies I.M., Quintana F., Weimerskirch H., Storch S., Lucke K., Siebert U., Zankl S., Müller G., et al. All at Sea with Animal Tracks; Methodological and Analytical Solutions for the Resolution of Movement. Deep. Res. Part II Top. Stud. Oceanogr. 2007;54:193–210. doi: 10.1016/j.dsr2.2006.11.017. DOI
Wilson R.P., Rose K.A.R., Metcalfe R.S., Holton M.D., Redcliffe J., Gunner R., Börger L., Loison A., Jezek M., Painter M.S., et al. Path Tortuosity Changes the Transport Cost Paradigm in Terrestrial Animals. Ecography. 2021;44:1524–1532. doi: 10.1111/ecog.05850. DOI
Walker J.S., Jones M.W., Laramee R.S., Holton M.D., Shepard E.L.C., Williams H.J., Michael Scantlebury D., Marks N.J., Magowan E.A., Maguire I.E., et al. Prying into the Intimate Secrets of Animal Lives; Software beyond Hardware for Comprehensive Annotation in ‘Daily Diary’ Tags. Mov. Ecol. 2015;3:29. doi: 10.1186/s40462-015-0056-3. PubMed DOI PMC
Painter M.S., Blanco J.A., Malkemper E.P., Anderson C., Sweeney D.C., Hewgley C.W., Červený J., Hart V., Topinka V., Belotti E., et al. Use of Bio-Loggers to Characterize Red Fox Behavior with Implications for Studies of Magnetic Alignment Responses in Free-Roaming Animals. Anim. Biotelemetry. 2016;4:20. doi: 10.1186/s40317-016-0113-8. DOI
Bosch J., Rodríguez A., Iglesias I., Muñoz M.J., Jurado C., Sánchez-Vizcaíno J.M., de la Torre A. Update on the Risk of Introduction of African Swine Fever by Wild Boar into Disease-Free European Union Countries. Transbound. Emerg. Dis. 2017;64:1424–1432. doi: 10.1111/tbed.12527. PubMed DOI
More S., Miranda M.A., Bicout D., Bøtner A., Butterworth A., Calistri P., Edwards S., Garin-Bastuji B., Good M., Michel V., et al. African Swine Fever in Wild Boar. EFSA J. 2018;16:e05344. PubMed PMC
Podgórski T., Śmietanka K. Do Wild Boar Movements Drive the Spread of African Swine Fever? Transbound. Emerg. Dis. 2018;65:1588–1596. doi: 10.1111/tbed.12910. PubMed DOI
Probst C., Globig A., Knoll B., Conraths F.J., Depner K. Behaviour of Free Ranging Wild Boar towards Their Dead Fellows: Potential Implications for the Transmission of African Swine Fever. R. Soc. Open Sci. 2017;4:170054. doi: 10.1098/rsos.170054. PubMed DOI PMC
Cukor J., Linda R., Václavek P., Mahlerová K., Šatrán P., Havránek F. Confirmed Cannibalism in Wild Boar and Its Possible Role in African Swine Fever Transmission. Transbound. Emerg. Dis. 2020;67:1068–1073. doi: 10.1111/tbed.13468. PubMed DOI
Desmecht D., Gerbier G., Gortázar Schmidt C., Grigaliuniene V., Helyes G., Kantere M., Korytarova D., Linden A., Miteva A., Neghirla I., et al. Epidemiological Analysis of African Swine Fever in the European Union (September 2019 to August 2020) EFSA J. 2021;19:e06572. doi: 10.2903/j.efsa.2021.6572. PubMed DOI PMC
Dei Giudici S., Loi F., Ghisu S., Angioi P.P., Zinellu S., Fiori M.S., Carusillo F., Brundu D., Franzoni G., Zidda G.M., et al. The Long-Jumping of African Swine Fever: First Genotype II Notified in Sardinia, Italy. Viruses. 2024;16:32. doi: 10.3390/v16010032. PubMed DOI PMC
Gervasi V., Sordilli M., Loi F., Guberti V. Estimating the Directional Spread of Epidemics in Their Early Stages Using a Simple Regression Approach: A Study on African Swine Fever in Northern Italy. Pathogens. 2023;12:812. doi: 10.3390/pathogens12060812. PubMed DOI PMC
Podgórski T., Baś G., Jȩdrzejewska B., Sönnichsen L., Śniezko S., Jȩdrzejewski W., Okarma H. Spatiotemporal Behavioral Plasticity of Wild Boar (Sus scrofa) under Contrasting Conditions of Human Pressure: Primeval Forest and Metropolitan Area. J. Mammal. 2013;94:109–119. doi: 10.1644/12-MAMM-A-038.1. DOI
Csókás A., Schally G., Szabó L., Csányi S., Kovács F., Heltai M. Space Use of Wild Boar (Sus scrofa) in Budapest: Are They Resident or Transient City Dwellers? Biol. Futur. 2020;71:39–51. doi: 10.1007/s42977-020-00010-y. PubMed DOI
Castillo-Contreras R., Carvalho J., Serrano E., Mentaberre G., Fernández-Aguilar X., Colom A., González-Crespo C., Lavín S., López-Olvera J.R. Urban Wild Boars Prefer Fragmented Areas with Food Resources near Natural Corridors. Sci. Total Environ. 2018;615:282–288. doi: 10.1016/j.scitotenv.2017.09.277. PubMed DOI
Ciuti S., Northrup J.M., Muhly T.B., Simi S., Musiani M., Pitt J.A., Boyce M.S. Effects of Humans on Behaviour of Wildlife Exceed Those of Natural Predators in a Landscape of Fear. PLoS ONE. 2012;7:e50611. doi: 10.1371/journal.pone.0050611. PubMed DOI PMC
Scillitani L., Monaco A., Toso S. Do Intensive Drive Hunts Affect Wild Boar (Sus scrofa) Spatial Behaviour in Italy? Some Evidences and Management Implications. Eur. J. Wildl. Res. 2010;56:307–318. doi: 10.1007/s10344-009-0314-z. DOI
Drimaj J., Kamler J., Plhal R., Janata P., Adamec Z., Homolka M. Intensive Hunting Pressure Changes Local Distribution of Wild Boar. Hum.-Wildl. Interact. 2021;15:22–31. doi: 10.26077/b792-8211. DOI
Keuling O., Massei G. Does Hunting Affect the Behavior of Wild Pigs? Hum.-Wildl. Interact. 2021;15:44–55. doi: 10.26077/3a83-9155. DOI
Guinat C., Vergne T., Jurado-Diaz C., Sánchez-Vizcaíno J.M., Dixon L., Pfeiffer D.U. Scientific Opinion on African Swine Fever. EFSA J. 2010;8:97. doi: 10.2903/j.efsa.2010.1556. PubMed DOI PMC
Guinat C., Vergne T., Jurado-Diaz C., Sánchez-Vizcaíno J.M., Dixon L., Pfeiffer D.U. Effectiveness and Practicality of Control Strategies for African Swine Fever: What Do We Really Know? Vet. Rec. 2017;180:97. doi: 10.1136/vr.103992. PubMed DOI PMC
Miteva A., Papanikolaou A., Gogin A., Boklund A., Bøtner A., Linden A., Viltrop A., Schmidt C.G., Ivanciu C., Desmecht D., et al. Epidemiological Analyses of African Swine Fever in the European Union (November 2018 to October 2019) EFSA J. 2020;18:e05996. doi: 10.2903/j.efsa.2020.5996. DOI