Different patterns of human activities in nature during Covid-19 pandemic and African swine fever outbreak confirm direct impact on wildlife disruption

. 2021 Oct 21 ; 11 (1) : 20791. [epub] 20211021

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34675330

Grantová podpora
QK1920184 Ministerstvo Zemědělství
QK1920184 Ministerstvo Zemědělství
QK1910462 Ministerstvo Zemědělství
QK1920184 Ministerstvo Zemědělství
CZ.02.1.01/0.0/0.0/16_019/0000803 EVA4.0
CZ.02.1.01/0.0/0.0/16_019/0000803 EVA4.0
Excelent Project 2021 Fakulta Lesnická a Drevarská, Česká Zemědělská Univerzita v Praze
Excelent Project 2021 Fakulta Lesnická a Drevarská, Česká Zemědělská Univerzita v Praze
Excelent Project 2021 Fakulta Lesnická a Drevarská, Česká Zemědělská Univerzita v Praze
A_20_27 Česká Zemědělská Univerzita v Praze

Odkazy

PubMed 34675330
PubMed Central PMC8531377
DOI 10.1038/s41598-021-99862-0
PII: 10.1038/s41598-021-99862-0
Knihovny.cz E-zdroje

Implementation of various restrictions to eradicate viral diseases has globally affected human activity and subsequently nature. But how can the altered routines of human activity (restrictions, lockdowns) affect wildlife behaviour? This study compared the differences between human and wildlife occurrences in the study forest area with acreage of 5430.6 ha in 2018 (African swine fever outbreak, complete entrance ban), 2019 (standard pattern) and 2020 (COVID-19 restrictions) during the breeding season. The number of visitors was lower by 64% in 2018 (non-respecting of the entry ban by forest visitors) compared to standard 2019, while in 2020, the number of visitors increased to 151%. In the COVID-19 period, distinct peaks in the number of visitors were observed between 8-11 AM and 4-7 PM. The peaks of wildlife activity were recorded between 4-7 AM and 9-12 PM. Animals avoided the localities that were visited by humans during the people-influenced time (24 h after people visit), which confirmed the direct negative impact of human activities on wildlife.

Zobrazit více v PubMed

DeStefano S, DeGraaf RM. Exploring the ecology of suburban wildlife. Front. Ecol. Environ. 2003;1:95. doi: 10.1890/1540-9295(2003)001[0095:ETEOSW]2.0.CO;2. DOI

Treves A, Wallace RB, Naughton-Treves L, Morales A. Co-managing human–wildlife conflicts: a review. Hum. Dimens. Wildl. 2006;11:383–396. doi: 10.1080/10871200600984265. DOI

Oberosler V, Groff C, Iemma A, Pedrini P, Rovero F. The influence of human disturbance on occupancy and activity patterns of mammals in the Italian Alps from systematic camera trapping. Mamm. Biol. 2017;87:50–61. doi: 10.1016/j.mambio.2017.05.005. DOI

Tyler NJC. Short-term behavioural responses of Svalbard reindeer Rangifer tarandus platyrhynchus to direct provocation by a snowmobile. Biol. Conserv. 1991;56:179–194. doi: 10.1016/0006-3207(91)90016-3. DOI

Tolvanen A, Kangas K. Tourism, biodiversity and protected areas—review from northern Fennoscandia. J. Environ. Manage. 2016;169:58–66. doi: 10.1016/j.jenvman.2015.12.011. PubMed DOI

Ballantyne M, Pickering CM. Tourism and recreation: a common threat to IUCN red-listed vascular plants in Europe. Biodivers. Conserv. 2013;22:3027–3044. doi: 10.1007/s10531-013-0569-2. DOI

Pickering CM, Hill W, Newsome D, Leung YF. Comparing hiking, mountain biking and horse riding impacts on vegetation and soils in Australia and the United States of America. J. Environ. Manage. 2010;91:551–562. doi: 10.1016/j.jenvman.2009.09.025. PubMed DOI

Coppes J, Ehrlacher J, Thiel D, Suchant R, Braunisch V. Outdoor recreation causes effective habitat reduction in capercaillie Tetrao urogallus: a major threat for geographically restricted populations. J. Avian Biol. 2017;48:1583–1594. doi: 10.1111/jav.01239. DOI

Siikamäki P, Kangas K, Paasivaara A, Schroderus S. Biodiversity attracts visitors to national parks. Biodivers. Conserv. 2015;24:2521–2534. doi: 10.1007/s10531-015-0941-5. DOI

Gerstenberg T, Baumeister CF, Schraml U, Plieninger T. Hot routes in urban forests: the impact of multiple landscape features on recreational use intensity. Landsc. Urban Plan. 2020;203:103888. doi: 10.1016/j.landurbplan.2020.103888. DOI

Fischer LK, Kowarik I. Dogwalkers’ views of urban biodiversity across five European cities. Sustain. 2020;12:1–11.

Lundgren, J. O. Polar tourism: tourism in the Arctic and Antarctic regions. in The tourism space penetration processes in northern Canada and Scandinavia: a comparison 43–61 (1995).

Balmford A, et al. Walk on the wild side: estimating the global magnitude of visits to protected areas. PLoS Biol. 2015;13:1–6. doi: 10.1371/journal.pbio.1002074. PubMed DOI PMC

George SL, Crooks KR. Recreation and large mammal activity in an urban nature reserve. Biol. Conserv. 2006;133:107–117. doi: 10.1016/j.biocon.2006.05.024. DOI

Zhong, L., Zhang, X., Deng, J. & Pierskalla, C. Recreation ecology research in China’s protected areas: progress and prospect. Ecosyst. Heal. Sustain.6 (2020).

Mancini F, Leyshon B, Manson F, Coghill GM, Lusseau D. Monitoring tourists’ specialisation and implementing adaptive governance is necessary to avoid failure of the wildlife tourism commons. Tour. Manag. 2020;81:104160. doi: 10.1016/j.tourman.2020.104160. DOI

Abate M, Christidis P, Purwanto AJ. Government support to airlines in the aftermath of the COVID-19 pandemic. J. Air Transp. Manag. 2020;89:101931. doi: 10.1016/j.jairtraman.2020.101931. PubMed DOI PMC

Castanho RA, et al. The impact of SARS-CoV-2 outbreak on the accommodation selection of Azorean tourists. A study based on the assessment of the Azores population’s attitudes. Sustainability. 2020;12:9990. doi: 10.3390/su12239990. DOI

Neupane D. How conservation will be impacted in the COVID-19 pandemic. Wildlife Biol. 2020;2020:19–21. doi: 10.2981/wlb.00727. DOI

Herrero C, Villar A. A synthetic indicator on the impact of COVID-19 on the community’s health. PLoS ONE. 2020;15:1–14. PubMed PMC

World Health Organization (WHO). Coronavirus Disease (COVID-19) Situation Reports Updates 27 September 2020. World Health Organization Technical Report Series (2020).

da Silva FCT, Neto MLR. Psychological effects caused by the COVID-19 pandemic in health professionals: a systematic review with meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2021;104:110. doi: 10.1016/j.pnpbp.2020.110057. PubMed DOI PMC

Sohrabi C, et al. World health organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19) Int. J. Surg. 2020;76:71–76. doi: 10.1016/j.ijsu.2020.02.034. PubMed DOI PMC

Hellewell J, et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob. Heal. 2020;8:e488–e496. doi: 10.1016/S2214-109X(20)30074-7. PubMed DOI PMC

Steidtmann D, McBride S, Mishkind MC. Experiences of mental health clinicians and staff in rapidly converting to full-time telemental health and work from home during the COVID-19 pandemic. Telemed. e-Health. 2021;27(7):785–791. doi: 10.1089/tmj.2020.0305. PubMed DOI

Chiu WA, Fischer R, Ndeffo-Mbah ML. State-level needs for social distancing and contact tracing to contain COVID-19 in the United States. Nat. Hum. Behav. 2020;4:1080–1090. doi: 10.1038/s41562-020-00969-7. PubMed DOI PMC

Rutz C, et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 2020;4:1156–1159. doi: 10.1038/s41559-020-1237-z. PubMed DOI

Zellmer AJ, et al. What can we learn from wildlife sightings during the COVID-19 global shutdown? Ecosphere. 2020;11:e03215. doi: 10.1002/ecs2.3215. PubMed DOI PMC

Ghahremanloo M, Lops Y, Choi Y, Mousavinezhad S. Impact of the COVID-19 outbreak on air pollution levels in East Asia. Sci. Total Environ. 2021;754:142226. doi: 10.1016/j.scitotenv.2020.142226. PubMed DOI PMC

Rosenbloom D, Markard J. A COVID-19 recovery for climate. Science. 2020;368:447–447. doi: 10.1126/science.abc4887. PubMed DOI

Lokhandwala S, Gautam P. Indirect impact of COVID-19 on environment: a brief study in Indian context. Environ. Res. 2020;188:109807. doi: 10.1016/j.envres.2020.109807. PubMed DOI PMC

Manenti R, et al. The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: insights from the first European locked down country. Biol. Conserv. 2020;249:108728. doi: 10.1016/j.biocon.2020.108728. PubMed DOI PMC

Corlett RT, et al. Impacts of the coronavirus pandemic on biodiversity conservation. Biol. Conserv. 2020;246:8–11. doi: 10.1016/j.biocon.2020.108571. PubMed DOI PMC

Bates AE, Primack RB, Moraga P, Duarte CM. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Conserv. 2020;248:108665. doi: 10.1016/j.biocon.2020.108665. PubMed DOI PMC

Arias M, Jurado C, Gallardo C, Fernández-Pinero J, Sánchez-Vizcaíno JM. Gaps in African swine fever: analysis and priorities. Transbound. Emerg. Dis. 2018;65:235–247. doi: 10.1111/tbed.12695. PubMed DOI

Galindo I, Alonso C. African swine fever virus: a review. Viruses. 2017;9:103. doi: 10.3390/v9050103. PubMed DOI PMC

Taylor RA, et al. Predicting spread and effective control measures for African swine fever—should we blame the boars? Transbound Emerg. Dis. 2020 doi: 10.1111/tbed.13690. PubMed DOI

Mason-D’Croz D, et al. Modelling the global economic consequences of a major African swine fever outbreak in China. Nat. Food. 2020;1:221–228. doi: 10.1038/s43016-020-0057-2. PubMed DOI PMC

Podgórski T, Śmietanka K. Do wild boar movements drive the spread of African Swine Fever? Transbound. Emerg. Dis. 2018;65:1588–1596. doi: 10.1111/tbed.12910. PubMed DOI

Petit K, et al. Assessment of the impact of forestry and leisure activities on wild boar spatial disturbance with a potential application to ASF risk of spread. Transbound. Emerg. Dis. 2020;67:1164–1176. doi: 10.1111/tbed.13447. PubMed DOI

Watanabe S, Wahlqvist ML. Covid-19 and dietary socioecology: Risk minimisation. Asia Pac. J. Clin. Nutr. 2020;29:207–219. PubMed

Geng D, Innes J, Wu W, Wang G. Impacts of COVID-19 pandemic on urban park visitation: a global analysis. J. For. Res. 2020 doi: 10.1007/s11676-020-01249-w. PubMed DOI PMC

Godbersen H, Hofmann LA, Ruiz-Fernández S. How people evaluate anti-corona measures for their social spheres: attitude, subjective norm, and perceived behavioral control. Front. Psychol. 2020;11:1–20. doi: 10.3389/fpsyg.2020.567405. PubMed DOI PMC

Cukor J, et al. Wild boar deathbed choice in relation to ASF : Are there any differences between positive and negative carcasses? Prev. Vet. 2020;177:1–7. PubMed

McGinlay J, et al. The impact of COVID-19 on the management of European protected areas and policy implications. Forests. 2020;11:1–15. doi: 10.3390/f11111214. DOI

Derks J, Giessen L, Winkel G. COVID-19-induced visitor boom reveals the importance of forests as critical infrastructure. For. Policy Econ. 2020;118:102253. doi: 10.1016/j.forpol.2020.102253. PubMed DOI PMC

Venter ZS, Barton DN, Gundersen V, Figari H, Nowell M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 2020;15:1–11. doi: 10.1088/1748-9326/abb396. DOI

Jůza R, Jarský V, Riedl M, Zahradník D, Šišák L. Possibilities for harmonisation between recreation services and their production within the forest sector—a case study of municipal forest enterprise hradec Králové (CZ) Forests. 2020;12:13. doi: 10.3390/f12010013. DOI

Dellicour S, et al. Unravelling the dispersal dynamics and ecological drivers of the African swine fever outbreak in Belgium. J. Appl. Ecol. 2020;57:1619–1629. doi: 10.1111/1365-2664.13649. DOI

Carnol M, et al. Ecosystem services of mixed species forest stands and monocultures: comparing practitioners and scientists perceptions with formal scientific knowledge. Forestry. 2014;87:639–653. doi: 10.1093/forestry/cpu024. DOI

Dušek D, Kacálek D, Novák J, Slodičák M. Public perception of recreation needs—a questionnaire study from Ostrava urban forests (Czech Republic) Zpravy Lesn. Vyzk Rep. For. Res. 2017;62:174–181.

Meo ID, Paletto A, Cantiani MG. The attractiveness of forests: Preferences and perceptions in a mountain community in Italy. Ann. For. Res. 2015;58:145–156.

Sadecký D, Pejcha J, Šišák L. Analysis of the public opinion on forest and forest management in the žďárské vrchy protected landscape area, czech republic [Analýza názorů veřejnosti na les a lesní hospodářství v chráněné krajinné oblasti žďárské vrchy] Zpravy Lesn. Vyzk. 2014;59:11–17.

Ciuti S, et al. Effects of Humans on Behaviour of Wildlife Exceed Those of Natural Predators in a Landscape of Fear. PLoS ONE. 2012;7:1–16. doi: 10.1371/journal.pone.0050611. PubMed DOI PMC

Palacios MG, D’Amico VL, Bertellotti M. Ecotourism effects on health and immunity of Magellanic penguins at two reproductive colonies with disparate touristic regimes and population trends. Conserv. Physiol. 2018;6:1–13. doi: 10.1093/conphys/coy060. PubMed DOI PMC

Schuttler SG, et al. Deer on the lookout: how hunting, hiking and coyotes affect white-tailed deer vigilance. J. Zool. 2017;301:320–327. doi: 10.1111/jzo.12416. DOI

Preisser EL, Bolnick DI, Benard MF. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology. 2005;86:501–509. doi: 10.1890/04-0719. DOI

Creel S, Winnie J, Maxwell B, Hamlin K, Creel M. Elk alter habitat selection as an antipredator response to wolves. Ecology. 2005;86:3387–3397. doi: 10.1890/05-0032. DOI

French SS, Denardo DF, Greives TJ, Strand CR, Demas GE. Human disturbance alters endocrine and immune responses in the Galapagos marine iguana (Amblyrhynchus cristatus) Horm. Behav. 2010;58:792–799. doi: 10.1016/j.yhbeh.2010.08.001. PubMed DOI PMC

Beehner JC, Bergman TJ. The next step for stress research in primates: to identify relationships between glucocorticoid secretion and fitness. Horm. Behav. 2017;91:68–83. doi: 10.1016/j.yhbeh.2017.03.003. PubMed DOI

Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol. Res. 2014;58:193–210. doi: 10.1007/s12026-014-8517-0. PubMed DOI

Almasi B, Béziers P, Roulin A, Jenni L. Agricultural land use and human presence around breeding sites increase stress-hormone levels and decrease body mass in barn owl nestlings. Oecologia. 2015;179:89–101. doi: 10.1007/s00442-015-3318-2. PubMed DOI

Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000;21:55–89. PubMed

Szwagrzyk J, et al. Effects of species and environmental factors on browsing frequency of young trees in mountain forests affected by natural disturbances. For. Ecol. Manage. 2020;474:1–13. doi: 10.1016/j.foreco.2020.118364. DOI

Möst L, Hothorn T, Müller J, Heurich M. Creating a landscape of management: unintended effects on the variation of browsing pressure in a national park. For. Ecol. Manage. 2015;338:46–56. doi: 10.1016/j.foreco.2014.11.015. DOI

Cukor J, et al. Effects of bark stripping on timber production and structure of Norway Spruce forests in relation to climatic factors. Forests. 2019;10:13–17. doi: 10.3390/f10040320. DOI

Vacek Z, et al. Bark stripping, the crucial factor affecting stem rot development and timber production of Norway spruce forests in Central Europe. For. Ecol. Manage. 2020;474:118360. doi: 10.1016/j.foreco.2020.118360. DOI

Barrueto M, Ford AT, Clevenger AP. Anthropogenic effects on activity patterns of wildlife at crossing structures. Ecosphere. 2014;5:1–19. doi: 10.1890/ES13-00382.1. DOI

Ignatavičius G, et al. Temporal patterns of ungulate-vehicle collisions in a sparsely populated country. Eur. J. Wildl. Res. 2020;66:1–9. doi: 10.1007/s10344-020-01396-9. DOI

Price MV, Strombom EH, Blumstein DT. Human activity affects the perception of risk by mule deer. Curr. Zool. 2014;60:693–699. doi: 10.1093/czoolo/60.6.693. DOI

Romero LM, Dickens MJ, Cyr NE. The reactive scope model—a new model integrating homeostasis, allostasis, and stress. Horm. Behav. 2009;55:375–389. doi: 10.1016/j.yhbeh.2008.12.009. PubMed DOI

Cukor J, Havránek F, Rohla J, Bukovjan K. Estimation of red deer density in the west part of the Ore Mts (Czech Republic) Zpravy Lesn. Vyzk. Rep. For. Res. 2017;62:288–295.

Carpio AJ, Apollonio M, Acevedo P. Wild ungulate overabundance in Europe: contexts, causes, monitoring and management recommendations. Mamm. Rev. 2021;51:95–108. doi: 10.1111/mam.12221. DOI

Iacolina L, Corlatti L, Buzan E, Safner T, Šprem N. Hybridisation in European ungulates: an overview of the current status, causes, and consequences. Mamm. Rev. 2019;49:45–59. doi: 10.1111/mam.12140. DOI

Kangas K, Luoto M, Ihantola A, Tomppo E, Siikamäki P. Recreation-induced changes in boreal bird communities in protected areas. Ecol. Appl. 2010;20:1775–1786. doi: 10.1890/09-0399.1. PubMed DOI

Tost D, Strauß E, Jung K, Siebert U. Impact of tourism on habitat use of black grouse (Tetrao tetrix) in an isolated population in northern Germany. PLoS ONE. 2020;15:e0238660. doi: 10.1371/journal.pone.0238660. PubMed DOI PMC

Köppen W. Das Geographische System der Klimate, Handbuch der Klimatologie. Gebrüder Borntraeger; 1936.

Rob F, et al. Compliance, safety concerns and anxiety in patients treated with biologics for psoriasis during the COVID-19 pandemic national lockdown: a multicenter study in the Czech Republic. J. Eur. Acad. Dermatol. Venereol. 2020;76:jdv.16771. PubMed PMC

Government of the Czech Republic. Measures adopted by the Czech Government against the coronavirus. (2021). Available at: https://www.vlada.cz/en/media-centrum/aktualne/measures-adopted-by-the-czech-government-against-coronavirus-180545/. (Accessed: 5th February 2021).

Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (2016).

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...