Different patterns of human activities in nature during Covid-19 pandemic and African swine fever outbreak confirm direct impact on wildlife disruption
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
QK1920184
Ministerstvo Zemědělství
QK1920184
Ministerstvo Zemědělství
QK1910462
Ministerstvo Zemědělství
QK1920184
Ministerstvo Zemědělství
CZ.02.1.01/0.0/0.0/16_019/0000803
EVA4.0
CZ.02.1.01/0.0/0.0/16_019/0000803
EVA4.0
Excelent Project 2021
Fakulta Lesnická a Drevarská, Česká Zemědělská Univerzita v Praze
Excelent Project 2021
Fakulta Lesnická a Drevarská, Česká Zemědělská Univerzita v Praze
Excelent Project 2021
Fakulta Lesnická a Drevarská, Česká Zemědělská Univerzita v Praze
A_20_27
Česká Zemědělská Univerzita v Praze
PubMed
34675330
PubMed Central
PMC8531377
DOI
10.1038/s41598-021-99862-0
PII: 10.1038/s41598-021-99862-0
Knihovny.cz E-zdroje
- MeSH
- africký mor prasat epidemiologie MeSH
- COVID-19 epidemiologie MeSH
- divoká zvířata * MeSH
- epidemický výskyt choroby * MeSH
- kontrola infekčních nemocí metody MeSH
- lidé MeSH
- lidské činnosti * MeSH
- pandemie MeSH
- prasata MeSH
- regresní analýza MeSH
- SARS-CoV-2 MeSH
- teplota MeSH
- virové nemoci epidemiologie MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Implementation of various restrictions to eradicate viral diseases has globally affected human activity and subsequently nature. But how can the altered routines of human activity (restrictions, lockdowns) affect wildlife behaviour? This study compared the differences between human and wildlife occurrences in the study forest area with acreage of 5430.6 ha in 2018 (African swine fever outbreak, complete entrance ban), 2019 (standard pattern) and 2020 (COVID-19 restrictions) during the breeding season. The number of visitors was lower by 64% in 2018 (non-respecting of the entry ban by forest visitors) compared to standard 2019, while in 2020, the number of visitors increased to 151%. In the COVID-19 period, distinct peaks in the number of visitors were observed between 8-11 AM and 4-7 PM. The peaks of wildlife activity were recorded between 4-7 AM and 9-12 PM. Animals avoided the localities that were visited by humans during the people-influenced time (24 h after people visit), which confirmed the direct negative impact of human activities on wildlife.
Faculty of AgriSciences Mendel University in Brno Zemědělská 1 613 00 Brno Czech Republic
Forestry and Game Management Research Institute 5 V 1 Strnady 136 252 02 Jíloviště Czech Republic
Zobrazit více v PubMed
DeStefano S, DeGraaf RM. Exploring the ecology of suburban wildlife. Front. Ecol. Environ. 2003;1:95. doi: 10.1890/1540-9295(2003)001[0095:ETEOSW]2.0.CO;2. DOI
Treves A, Wallace RB, Naughton-Treves L, Morales A. Co-managing human–wildlife conflicts: a review. Hum. Dimens. Wildl. 2006;11:383–396. doi: 10.1080/10871200600984265. DOI
Oberosler V, Groff C, Iemma A, Pedrini P, Rovero F. The influence of human disturbance on occupancy and activity patterns of mammals in the Italian Alps from systematic camera trapping. Mamm. Biol. 2017;87:50–61. doi: 10.1016/j.mambio.2017.05.005. DOI
Tyler NJC. Short-term behavioural responses of Svalbard reindeer Rangifer tarandus platyrhynchus to direct provocation by a snowmobile. Biol. Conserv. 1991;56:179–194. doi: 10.1016/0006-3207(91)90016-3. DOI
Tolvanen A, Kangas K. Tourism, biodiversity and protected areas—review from northern Fennoscandia. J. Environ. Manage. 2016;169:58–66. doi: 10.1016/j.jenvman.2015.12.011. PubMed DOI
Ballantyne M, Pickering CM. Tourism and recreation: a common threat to IUCN red-listed vascular plants in Europe. Biodivers. Conserv. 2013;22:3027–3044. doi: 10.1007/s10531-013-0569-2. DOI
Pickering CM, Hill W, Newsome D, Leung YF. Comparing hiking, mountain biking and horse riding impacts on vegetation and soils in Australia and the United States of America. J. Environ. Manage. 2010;91:551–562. doi: 10.1016/j.jenvman.2009.09.025. PubMed DOI
Coppes J, Ehrlacher J, Thiel D, Suchant R, Braunisch V. Outdoor recreation causes effective habitat reduction in capercaillie Tetrao urogallus: a major threat for geographically restricted populations. J. Avian Biol. 2017;48:1583–1594. doi: 10.1111/jav.01239. DOI
Siikamäki P, Kangas K, Paasivaara A, Schroderus S. Biodiversity attracts visitors to national parks. Biodivers. Conserv. 2015;24:2521–2534. doi: 10.1007/s10531-015-0941-5. DOI
Gerstenberg T, Baumeister CF, Schraml U, Plieninger T. Hot routes in urban forests: the impact of multiple landscape features on recreational use intensity. Landsc. Urban Plan. 2020;203:103888. doi: 10.1016/j.landurbplan.2020.103888. DOI
Fischer LK, Kowarik I. Dogwalkers’ views of urban biodiversity across five European cities. Sustain. 2020;12:1–11.
Lundgren, J. O. Polar tourism: tourism in the Arctic and Antarctic regions. in The tourism space penetration processes in northern Canada and Scandinavia: a comparison 43–61 (1995).
Balmford A, et al. Walk on the wild side: estimating the global magnitude of visits to protected areas. PLoS Biol. 2015;13:1–6. doi: 10.1371/journal.pbio.1002074. PubMed DOI PMC
George SL, Crooks KR. Recreation and large mammal activity in an urban nature reserve. Biol. Conserv. 2006;133:107–117. doi: 10.1016/j.biocon.2006.05.024. DOI
Zhong, L., Zhang, X., Deng, J. & Pierskalla, C. Recreation ecology research in China’s protected areas: progress and prospect. Ecosyst. Heal. Sustain.6 (2020).
Mancini F, Leyshon B, Manson F, Coghill GM, Lusseau D. Monitoring tourists’ specialisation and implementing adaptive governance is necessary to avoid failure of the wildlife tourism commons. Tour. Manag. 2020;81:104160. doi: 10.1016/j.tourman.2020.104160. DOI
Abate M, Christidis P, Purwanto AJ. Government support to airlines in the aftermath of the COVID-19 pandemic. J. Air Transp. Manag. 2020;89:101931. doi: 10.1016/j.jairtraman.2020.101931. PubMed DOI PMC
Castanho RA, et al. The impact of SARS-CoV-2 outbreak on the accommodation selection of Azorean tourists. A study based on the assessment of the Azores population’s attitudes. Sustainability. 2020;12:9990. doi: 10.3390/su12239990. DOI
Neupane D. How conservation will be impacted in the COVID-19 pandemic. Wildlife Biol. 2020;2020:19–21. doi: 10.2981/wlb.00727. DOI
Herrero C, Villar A. A synthetic indicator on the impact of COVID-19 on the community’s health. PLoS ONE. 2020;15:1–14. PubMed PMC
World Health Organization (WHO). Coronavirus Disease (COVID-19) Situation Reports Updates 27 September 2020. World Health Organization Technical Report Series (2020).
da Silva FCT, Neto MLR. Psychological effects caused by the COVID-19 pandemic in health professionals: a systematic review with meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2021;104:110. doi: 10.1016/j.pnpbp.2020.110057. PubMed DOI PMC
Sohrabi C, et al. World health organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19) Int. J. Surg. 2020;76:71–76. doi: 10.1016/j.ijsu.2020.02.034. PubMed DOI PMC
Hellewell J, et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob. Heal. 2020;8:e488–e496. doi: 10.1016/S2214-109X(20)30074-7. PubMed DOI PMC
Steidtmann D, McBride S, Mishkind MC. Experiences of mental health clinicians and staff in rapidly converting to full-time telemental health and work from home during the COVID-19 pandemic. Telemed. e-Health. 2021;27(7):785–791. doi: 10.1089/tmj.2020.0305. PubMed DOI
Chiu WA, Fischer R, Ndeffo-Mbah ML. State-level needs for social distancing and contact tracing to contain COVID-19 in the United States. Nat. Hum. Behav. 2020;4:1080–1090. doi: 10.1038/s41562-020-00969-7. PubMed DOI PMC
Rutz C, et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 2020;4:1156–1159. doi: 10.1038/s41559-020-1237-z. PubMed DOI
Zellmer AJ, et al. What can we learn from wildlife sightings during the COVID-19 global shutdown? Ecosphere. 2020;11:e03215. doi: 10.1002/ecs2.3215. PubMed DOI PMC
Ghahremanloo M, Lops Y, Choi Y, Mousavinezhad S. Impact of the COVID-19 outbreak on air pollution levels in East Asia. Sci. Total Environ. 2021;754:142226. doi: 10.1016/j.scitotenv.2020.142226. PubMed DOI PMC
Rosenbloom D, Markard J. A COVID-19 recovery for climate. Science. 2020;368:447–447. doi: 10.1126/science.abc4887. PubMed DOI
Lokhandwala S, Gautam P. Indirect impact of COVID-19 on environment: a brief study in Indian context. Environ. Res. 2020;188:109807. doi: 10.1016/j.envres.2020.109807. PubMed DOI PMC
Manenti R, et al. The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: insights from the first European locked down country. Biol. Conserv. 2020;249:108728. doi: 10.1016/j.biocon.2020.108728. PubMed DOI PMC
Corlett RT, et al. Impacts of the coronavirus pandemic on biodiversity conservation. Biol. Conserv. 2020;246:8–11. doi: 10.1016/j.biocon.2020.108571. PubMed DOI PMC
Bates AE, Primack RB, Moraga P, Duarte CM. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Conserv. 2020;248:108665. doi: 10.1016/j.biocon.2020.108665. PubMed DOI PMC
Arias M, Jurado C, Gallardo C, Fernández-Pinero J, Sánchez-Vizcaíno JM. Gaps in African swine fever: analysis and priorities. Transbound. Emerg. Dis. 2018;65:235–247. doi: 10.1111/tbed.12695. PubMed DOI
Galindo I, Alonso C. African swine fever virus: a review. Viruses. 2017;9:103. doi: 10.3390/v9050103. PubMed DOI PMC
Taylor RA, et al. Predicting spread and effective control measures for African swine fever—should we blame the boars? Transbound Emerg. Dis. 2020 doi: 10.1111/tbed.13690. PubMed DOI
Mason-D’Croz D, et al. Modelling the global economic consequences of a major African swine fever outbreak in China. Nat. Food. 2020;1:221–228. doi: 10.1038/s43016-020-0057-2. PubMed DOI PMC
Podgórski T, Śmietanka K. Do wild boar movements drive the spread of African Swine Fever? Transbound. Emerg. Dis. 2018;65:1588–1596. doi: 10.1111/tbed.12910. PubMed DOI
Petit K, et al. Assessment of the impact of forestry and leisure activities on wild boar spatial disturbance with a potential application to ASF risk of spread. Transbound. Emerg. Dis. 2020;67:1164–1176. doi: 10.1111/tbed.13447. PubMed DOI
Watanabe S, Wahlqvist ML. Covid-19 and dietary socioecology: Risk minimisation. Asia Pac. J. Clin. Nutr. 2020;29:207–219. PubMed
Geng D, Innes J, Wu W, Wang G. Impacts of COVID-19 pandemic on urban park visitation: a global analysis. J. For. Res. 2020 doi: 10.1007/s11676-020-01249-w. PubMed DOI PMC
Godbersen H, Hofmann LA, Ruiz-Fernández S. How people evaluate anti-corona measures for their social spheres: attitude, subjective norm, and perceived behavioral control. Front. Psychol. 2020;11:1–20. doi: 10.3389/fpsyg.2020.567405. PubMed DOI PMC
Cukor J, et al. Wild boar deathbed choice in relation to ASF : Are there any differences between positive and negative carcasses? Prev. Vet. 2020;177:1–7. PubMed
McGinlay J, et al. The impact of COVID-19 on the management of European protected areas and policy implications. Forests. 2020;11:1–15. doi: 10.3390/f11111214. DOI
Derks J, Giessen L, Winkel G. COVID-19-induced visitor boom reveals the importance of forests as critical infrastructure. For. Policy Econ. 2020;118:102253. doi: 10.1016/j.forpol.2020.102253. PubMed DOI PMC
Venter ZS, Barton DN, Gundersen V, Figari H, Nowell M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 2020;15:1–11. doi: 10.1088/1748-9326/abb396. DOI
Jůza R, Jarský V, Riedl M, Zahradník D, Šišák L. Possibilities for harmonisation between recreation services and their production within the forest sector—a case study of municipal forest enterprise hradec Králové (CZ) Forests. 2020;12:13. doi: 10.3390/f12010013. DOI
Dellicour S, et al. Unravelling the dispersal dynamics and ecological drivers of the African swine fever outbreak in Belgium. J. Appl. Ecol. 2020;57:1619–1629. doi: 10.1111/1365-2664.13649. DOI
Carnol M, et al. Ecosystem services of mixed species forest stands and monocultures: comparing practitioners and scientists perceptions with formal scientific knowledge. Forestry. 2014;87:639–653. doi: 10.1093/forestry/cpu024. DOI
Dušek D, Kacálek D, Novák J, Slodičák M. Public perception of recreation needs—a questionnaire study from Ostrava urban forests (Czech Republic) Zpravy Lesn. Vyzk Rep. For. Res. 2017;62:174–181.
Meo ID, Paletto A, Cantiani MG. The attractiveness of forests: Preferences and perceptions in a mountain community in Italy. Ann. For. Res. 2015;58:145–156.
Sadecký D, Pejcha J, Šišák L. Analysis of the public opinion on forest and forest management in the žďárské vrchy protected landscape area, czech republic [Analýza názorů veřejnosti na les a lesní hospodářství v chráněné krajinné oblasti žďárské vrchy] Zpravy Lesn. Vyzk. 2014;59:11–17.
Ciuti S, et al. Effects of Humans on Behaviour of Wildlife Exceed Those of Natural Predators in a Landscape of Fear. PLoS ONE. 2012;7:1–16. doi: 10.1371/journal.pone.0050611. PubMed DOI PMC
Palacios MG, D’Amico VL, Bertellotti M. Ecotourism effects on health and immunity of Magellanic penguins at two reproductive colonies with disparate touristic regimes and population trends. Conserv. Physiol. 2018;6:1–13. doi: 10.1093/conphys/coy060. PubMed DOI PMC
Schuttler SG, et al. Deer on the lookout: how hunting, hiking and coyotes affect white-tailed deer vigilance. J. Zool. 2017;301:320–327. doi: 10.1111/jzo.12416. DOI
Preisser EL, Bolnick DI, Benard MF. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology. 2005;86:501–509. doi: 10.1890/04-0719. DOI
Creel S, Winnie J, Maxwell B, Hamlin K, Creel M. Elk alter habitat selection as an antipredator response to wolves. Ecology. 2005;86:3387–3397. doi: 10.1890/05-0032. DOI
French SS, Denardo DF, Greives TJ, Strand CR, Demas GE. Human disturbance alters endocrine and immune responses in the Galapagos marine iguana (Amblyrhynchus cristatus) Horm. Behav. 2010;58:792–799. doi: 10.1016/j.yhbeh.2010.08.001. PubMed DOI PMC
Beehner JC, Bergman TJ. The next step for stress research in primates: to identify relationships between glucocorticoid secretion and fitness. Horm. Behav. 2017;91:68–83. doi: 10.1016/j.yhbeh.2017.03.003. PubMed DOI
Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol. Res. 2014;58:193–210. doi: 10.1007/s12026-014-8517-0. PubMed DOI
Almasi B, Béziers P, Roulin A, Jenni L. Agricultural land use and human presence around breeding sites increase stress-hormone levels and decrease body mass in barn owl nestlings. Oecologia. 2015;179:89–101. doi: 10.1007/s00442-015-3318-2. PubMed DOI
Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000;21:55–89. PubMed
Szwagrzyk J, et al. Effects of species and environmental factors on browsing frequency of young trees in mountain forests affected by natural disturbances. For. Ecol. Manage. 2020;474:1–13. doi: 10.1016/j.foreco.2020.118364. DOI
Möst L, Hothorn T, Müller J, Heurich M. Creating a landscape of management: unintended effects on the variation of browsing pressure in a national park. For. Ecol. Manage. 2015;338:46–56. doi: 10.1016/j.foreco.2014.11.015. DOI
Cukor J, et al. Effects of bark stripping on timber production and structure of Norway Spruce forests in relation to climatic factors. Forests. 2019;10:13–17. doi: 10.3390/f10040320. DOI
Vacek Z, et al. Bark stripping, the crucial factor affecting stem rot development and timber production of Norway spruce forests in Central Europe. For. Ecol. Manage. 2020;474:118360. doi: 10.1016/j.foreco.2020.118360. DOI
Barrueto M, Ford AT, Clevenger AP. Anthropogenic effects on activity patterns of wildlife at crossing structures. Ecosphere. 2014;5:1–19. doi: 10.1890/ES13-00382.1. DOI
Ignatavičius G, et al. Temporal patterns of ungulate-vehicle collisions in a sparsely populated country. Eur. J. Wildl. Res. 2020;66:1–9. doi: 10.1007/s10344-020-01396-9. DOI
Price MV, Strombom EH, Blumstein DT. Human activity affects the perception of risk by mule deer. Curr. Zool. 2014;60:693–699. doi: 10.1093/czoolo/60.6.693. DOI
Romero LM, Dickens MJ, Cyr NE. The reactive scope model—a new model integrating homeostasis, allostasis, and stress. Horm. Behav. 2009;55:375–389. doi: 10.1016/j.yhbeh.2008.12.009. PubMed DOI
Cukor J, Havránek F, Rohla J, Bukovjan K. Estimation of red deer density in the west part of the Ore Mts (Czech Republic) Zpravy Lesn. Vyzk. Rep. For. Res. 2017;62:288–295.
Carpio AJ, Apollonio M, Acevedo P. Wild ungulate overabundance in Europe: contexts, causes, monitoring and management recommendations. Mamm. Rev. 2021;51:95–108. doi: 10.1111/mam.12221. DOI
Iacolina L, Corlatti L, Buzan E, Safner T, Šprem N. Hybridisation in European ungulates: an overview of the current status, causes, and consequences. Mamm. Rev. 2019;49:45–59. doi: 10.1111/mam.12140. DOI
Kangas K, Luoto M, Ihantola A, Tomppo E, Siikamäki P. Recreation-induced changes in boreal bird communities in protected areas. Ecol. Appl. 2010;20:1775–1786. doi: 10.1890/09-0399.1. PubMed DOI
Tost D, Strauß E, Jung K, Siebert U. Impact of tourism on habitat use of black grouse (Tetrao tetrix) in an isolated population in northern Germany. PLoS ONE. 2020;15:e0238660. doi: 10.1371/journal.pone.0238660. PubMed DOI PMC
Köppen W. Das Geographische System der Klimate, Handbuch der Klimatologie. Gebrüder Borntraeger; 1936.
Rob F, et al. Compliance, safety concerns and anxiety in patients treated with biologics for psoriasis during the COVID-19 pandemic national lockdown: a multicenter study in the Czech Republic. J. Eur. Acad. Dermatol. Venereol. 2020;76:jdv.16771. PubMed PMC
Government of the Czech Republic. Measures adopted by the Czech Government against the coronavirus. (2021). Available at: https://www.vlada.cz/en/media-centrum/aktualne/measures-adopted-by-the-czech-government-against-coronavirus-180545/. (Accessed: 5th February 2021).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (2016).
Wild boar carcasses in the center of boar activity: crucial risks of ASF transmission
Odor Fences Have No Effect on Wild Boar Movement and Home Range Size