Predicting spread and effective control measures for African swine fever-Should we blame the boars?
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
643476
Horizon 2020 Framework Programme
2014/15/B/NZ9/01933
Narodowe Centrum Nauki
PubMed
32564507
DOI
10.1111/tbed.13690
Knihovny.cz E-zdroje
- Klíčová slova
- dispersal, fencing, hunting, intervention strategies, risk assessment, risk of infection, wild boar movement,
- MeSH
- africký mor prasat epidemiologie prevence a kontrola přenos MeSH
- chování zvířat MeSH
- divoká zvířata * MeSH
- epidemický výskyt choroby veterinární MeSH
- prasata MeSH
- pravděpodobnost MeSH
- Sus scrofa * MeSH
- virus afrického moru prasat MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Asie epidemiologie MeSH
- Evropa epidemiologie MeSH
An ongoing, continually spreading, outbreak of African swine fever (ASF), following its identification in Georgia in 2007, has resulted in 17 European and 12 Asian countries reporting cases by April 2020, with cases occurring in both wild boar and domestic pigs. Curtailing further spread of ASF requires understanding of the transmission pathways of the disease. ASF is self-sustaining in the wild boar population, and they have been implicated as one of the main drivers of transmission within Europe. We developed a spatially explicit model to estimate the risk of infection with ASF in wild boar and pigs due to natural movement of wild boar that is applicable across the whole of Europe. We demonstrate the model by using it to predict the probability that early cases of ASF in Poland were caused by wild boar dispersion. The risk of infection in 2015 is computed due to wild boar cases in Poland in 2014, compared against reported cases in 2015, and then the procedure is repeated for 2015-2016. We find that long- and medium-distance spread of ASF (i.e. >30 km) is unlikely to have occurred due to wild boar dispersal, due in part to the generally short distances wild boar will travel (<20 km on average). We also predict the relative success of different control strategies in 2015, if they were implemented in 2014. Results suggest that hunting of wild boar reduces the number of new cases, but a larger region is at risk of ASF compared with no control measure. Alternatively, introducing wild boar-proof fencing reduces the size of the region at risk in 2015, but not the total number of cases. Overall, our model suggests wild boar movement is only responsible for local transmission of disease; thus, other pathways are more dominant in medium- and long-distance spread of the disease.
Department of Applied Mathematics and Theoretical Physics University of Cambridge Cambridge UK
Department of Epidemiological Sciences Animal and Plant Health Agency Addlestone UK
Department of Mathematics and Statistics University of Strathclyde Glasgow UK
Mammal Research Institute Polish Academy of Sciences Białowieża Poland
Zobrazit více v PubMed
Adkin, A., Coburn, H., England, T., Hall, S., Hartnett, E., Marooney, C., … Cox, T. (2004). Risk assessment for the illegal import of contaminated meat and meat products into Great Britain and the subsequent exposure of GB livestock (IIRA): Foot and mouth disease (FMD), classical swine fever (CSF), African swine fever (ASF), swine vesicular disease (SVD). New Haw: Veterinary Laboratories Agency.
Alexander, N. S., Massei, G., & Wint, W. (2016). The European Distribution of Sus Scrofa. Model outputs from the project described within the poster-where are all the boars? An attempt to gain a continental perspective. Open Health Data, 4(1), p.e1.
Andrzejewski, R., & Jezierski, W. (1978). Management of a wild boar population and its effects on commercial land. Acta Theriologica, 23(19), 309-339. https://doi.org/10.4098/AT.arch.78-23
Blome, S., Gabriel, C., Dietze, K., Breithaupt, A., & Beer, M. (2012). High virulence of African swine fever virus caucasus isolate in European wild boars of all ages. Emerging Infectious Diseases, 18(4), 708.
Bosch, J., Rodríguez, A., Iglesias, I., Muñoz, M., Jurado, C., Sánchez-Vizcaíno, J., & De la Torre, A. (2017). Update on the risk of introduction of African swine fever by wild boar into disease-free European Union Countries. Transboundary and Emerging Diseases, 64(5), 1424-1432. https://doi.org/10.1111/tbed.12527
Chenais, E., Depner, K., Guberti, V., Dietze, K., Viltrop, A., & Ståhl, K. (2019). Epidemiological considerations on African swine fever in Europe 2014-2018. Porcine Health Management, 5(1), 6.
Clobert, J. (2001). Dispersal. Oxford, UK: Oxford University Press.
Costard, S., Mur, L., Lubroth, J., Sanchez-Vizcaino, J., & Pfeiffer, D. (2013). Epidemiology of African swine fever virus. Virus Research, 173(1), 191-197. https://doi.org/10.1016/j.virusres.2012.10.030
Cukor, J., Linda, R., Václavek, P., Mahlerová, K., Šatrán, P., & Havránek, F. (2020). Confirmed cannibalism in wild boar and its possible role in African swine fever transmission. Transboundary and Emerging Diseases. https://doi.org/10.1111/tbed.13468
Cwynar, P., Stojkov, J., & Wlazlak, K. (2019). African swine fever status in Europe. Viruses, 11(4), 310. https://doi.org/10.3390/v11040310
D’Eath, R. B., & Turner, S. P. (2009). The natural behaviour of the pig. The welfare of pigs (pp. 13-45). Dordrecht, the Netherlands: Springer.
De la Torre, A., Bosch, J., Iglesias, I., Muñoz, M., Mur, L., Martínez-López, B., … Sánchez-Vizcaíno, J. M. (2015). Assessing the risk of African swine fever introduction into the European Union by wild boar. Transboundary and Emerging Diseases, 62(3), 272-279. https://doi.org/10.1111/tbed.12129
EFSA, (European Food Safety Authority), Boklund, A., Cay, B., Depner, K., Földi, Z., Guberti, V., … Gortázar, C. (2018). Scientific report on the epidemiological analyses of African swine fever in the European Union (November 2017 until November 2018). EFSA Journal, 16(11), 5494. https://doi.org/10.2903/j.efsa.2018.5494
EFSA, (European Food Safety Authority), Depner, K., Gortazar, C., Guberti, V., Masiulis, M., More, S., … Abrahantes, J. C. (2017). Epidemiological analyses of African swine fever in the Baltic States and Poland. EFSA Journal, 15(11), e05068. https://doi.org/10.2903/j.efsa.2017.5068
ENETWILD consortium, Croft, S., Smith, G., Acevedo, P., & Vicente, J. (2019). Wild boar in focus: Initial model outputs of wild boar distribution based on occurrence data and identification of priority areas for data collection. EFSA Supporting Publications, 16(1), 1533E. https://doi.org/10.2903/sp.efsa.2019.EN-1533
European Union (2002). Council Directive 2002/60/EC of 27 June 2002 laying down specific provisions for the control of African swine fever and amending Directive 92/119/EEC as regards Teschen disease and African swine fever (Text with EEA relevance) OJ L 192, 20.7.2002.
European Union (2018). SANTE/7113/2015 - Rev 10: Strategic Approach to the management of African Swine Fever for the EU.
FAO (2014). Gridded Livestock of the World (GLW). Retrieved May, 2017, from http://www.fao.org/ag/againfo/resources/en/glw/home.html
FAO (2019). ASF China situation update. Retrieved April, 2019, from http://www.fao.org/ag/againfo/programmes/en/empres/ASF/2019/Situation_update_2019_03_29.html
Gabriel, C., Blome, S., Malogolovkin, A., Parilov, S., Kolbasov, D., Teifke, J. P., & Beer, M. (2011). Characterization of African swine fever virus Caucasus isolate in European wild boars. Emerging Infectious Diseases, 17(12), 2342. https://doi.org/10.3201/eid1712.110430
Guinat, C., Gubbins, S., Vergne, T., Gonzales, J., Dixon, L., & Pfeiffer, D. (2016). Experimental pig-to-pig transmission dynamics for African swine fever virus, Georgia 2007/1 strain. Epidemiology & Infection, 144(1), 25-34. https://doi.org/10.1017/S0950268815000862
Guinat, C., Reis, A. L., Netherton, C. L., Goatley, L., Pfeiffer, D. U., & Dixon, L. (2014). Dynamics of African swine fever virus shedding and excretion in domestic pigs infected by intramuscular inoculation and contact transmission. Veterinary Research, 45(1), 93.
Halasa, T., Boklund, A., Bøtner, A., Mortensen, S., & Kjaer, L. J. (2019). Simulation of transmission and persistence of African swine fever in wild boar in Denmark. Preventive Veterinary Medicine, 167, 68-79.
Iglesias, I., Montes, F., Martínez, M., Perez, A., Gogin, A., Kolbasov, D., & de la Torre, A. (2018). Spatio-temporal kriging analysis to identify the role of wild boar in the spread of African swine fever in the Russian Federation. Spatial Statistics, 28, 226-235. https://doi.org/10.1016/j.spasta.2018.07.002.
Kay, S. L., Fischer, J. W., Monaghan, A. J., Beasley, J. C., Boughton, R., Campbell, T. A., … Kilgo, J. C. (2017). Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Movement Ecology, 5(1), 14.
Keuling, O., Lauterbach, K., Stier, N., & Roth, M. (2010). Hunter feedback of individually marked wild boar Sus scrofa L.: Dispersal and efficiency of hunting in northeastern Germany. European Journal of Wildlife Research, 56(2), 159-167. https://doi.org/10.1007/s10344-009-0296-x
Kukielka, E., Barasona, J. A., Cowie, C. E., Drewe, J., Gortazar, C., Cotarelo, I., & Vicente, J. (2013). Spatial and temporal interactions between livestock and wildlife in South Central Spain assessed by camera traps. Preventive Veterinary Medicine, 112(3-4), 213-221.
Lange, M. (2015). Alternative control strategies against ASF in wild boar populations. EFSA Supporting Publications, 12(7), 843E.
Lange, M., Guberti, V., & Thulke, H. H. (2018). Understanding ASF spread and emergency control concepts in wild boar populations using individual-based modelling and spatio-temporal surveillance data. EFSA Supporting Publications, 15(11), 1521E.
Leaper, R., Massei, G., Gorman, M., & Aspinall, R. (1999). The feasibility of reintroducing wild boar (Sus scrofa) to Scotland. Mammal Review, 29(4), 239-258. https://doi.org/10.1046/j.1365-2907.1999.2940239.x
Lewis, J. S., Farnsworth, M. L., Burdett, C. L., Theobald, D. M., Gray, M., & Miller, R. S. (2017). Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Scientific Reports, 7, 44152.
Massei, G., Genov, P., Staines, B., & Gorman, M. (1997). Factors influencing home range and activity of wild boar (Sus scrofa) in a Mediterranean coastal area. Journal of Zoology, 242(3), 411-423. https://doi.org/10.1111/j.1469-7998.1997.tb03845.x
Massei, G., Kindberg, J., Licoppe, A., Gačić, D., Šprem, N., Kamler, J., … Náhlik, A. (2015). Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Management Science, 71(4), 492-500. https://doi.org/10.1002/ps.3965
Mazur-Panasiuk, N., & Woźniakowski, G. (2019). The unique genetic variation within the O174L gene of Polish strains of African swine fever virus facilitates tracking virus origin. Archives of Virology, 64(6), 1667-1672.
Mebus, C. A., House, C., Gonzalvo, F. R., Pineda, J. M., Tapiador, J., Pire, J. J., … Sanchez-Vizcaino, J. M. (1993). Survival of foot-and-mouth disease, African swine fever, and hog cholera viruses in Spanish serrano cured hams and Iberian cured hams, shoulders and loins. Food Microbiology, 10(2), 133-143. https://doi.org/10.1006/fmic.1993.1014
Miller, R. S., & Pepin, K. M. (2019). BOARD INVITED REVIEW: Prospects for improving management of animal disease introductions using disease-dynamic models. Journal of Animal Science, 97(6), 2291-2307. https://doi.org/10.1093/jas/skz125
Mlynar, P. (2018). Ministerial Conference on "Eradication of African swine fever (ASF) in the EU and the long-term management of wild boar populations". African swine fever in wild boar in the Czech Republic. Ministry of Agriculture of the Czech Republic.
Morelle, K., Podgórski, T., Prévot, C., Keuling, O., Lehaire, F., & Lejeune, P. (2015). Towards understanding wild boar Sus scrofa movement: A synthetic movement ecology approach. Mammal Review, 45(1), 15-29.
Morley, R. (1993). A model for the assessment of the animal disease risks associated with the importation of animals and animal products. Revue Scientifique Et Technique-Office International Des Epizooties, 12, 1055.
OIE (2015). Guidelines for wildlife disease surveillance: An overview. https://www.oie.int/fileadmin/Home/eng/Internationa_Standard_Setting/docs/pdf/WGWildlife/OIE_Guidance_Wildlife_Surveillance_Feb2015.pdf, World Organisation for Animal Health
OIE (2020). World Organisation for Animal Health (OIE): World Animal Health Information Database (WAHIS) Interface. Retrieved March, 2020, from http://www.oie.int/wahis_2/public/wahid.php/Wahidhome/Home
Olesen, A., Lohse, L., Boklund, A., Halasa, T., Belsham, G., Rasmussen, T., & Bøtner, A. (2018). Short time window for transmissibility of African swine fever virus from a contaminated environment. Transboundary and Emerging Diseases. https://doi.org/10.1111/tbed.12837
PAFF Committee (2019). African swine fever in wild boar in Belgium, July 2019. Retrieved from https://ec.europa.eu/food/sites/food/files/animals/docs/reg-com_ahw_20190708_asf_bel.pdf
Pejsak, Z., Truszczyński, M., Kozak, E., & Markowska-Daniel, I. (2014). Epidemiological analysis of two first cases of African swine fever in wild boars in Poland. Medycyna Weterynaryjna, 70(6), 369-372.
Penrith, M. L., Bastos, A. D., Etter, E. M., & Beltrán-Alcrudo, D. (2019). Epidemiology of African swine fever in Africa today: Sylvatic cycle versus socio-economic imperatives. Transboundary and Emerging Diseases, 66(2), 672-686. https://doi.org/10.1111/tbed.13117
Pepin, K. M., Golnar, A., Abdo, Z., & Podgorski, T. (2020). Ecological drivers of African swine fever virus persistence in wild boar populations: Insight for control. Ecology and Evolution, 10(6), 2846-2859. https://doi.org/10.1002/ece3.6100
Pepin, K. M., & VerCauteren, K. C. (2016). Disease-emergence dynamics and control in a socially-structured wildlife species. Scientific Reports, 6, 25150. https://doi.org/10.1038/srep25150
Pietschmann, J., Guinat, C., Beer, M., Pronin, V., Tauscher, K., Petrov, A., … Blome, S. (2015). Course and transmission characteristics of oral low-dose infection of domestic pigs and European wild boar with a Caucasian African swine fever virus isolate. Archives of Virology, 160(7), 1657-1667. https://doi.org/10.1007/s00705-015-2430-2
Podgórski, T., Apollonio, M., & Keuling, O. (2018). Contact rates in wild boar populations: Implications for disease transmission. The Journal of Wildlife Management, 82(6), 1210-1218. https://doi.org/10.1002/jwmg.21480
Podgórski, T., Scandura, M., & Jędrzejewska, B. (2014). Next of kin next door-philopatry and socio-genetic population structure in wild boar. Journal of Zoology, 294(3), 190-197. https://doi.org/10.1111/jzo.12167
Podgórski, T., & Smietanka, K. (2018). Do wild boar movements drive the spread of African Swine Fever? Transboundary and Emerging Diseases, 65(6), 1588-1596.
Podgórski, T., & Śmietanka, K. (2018). Do wild boar movements drive the spread of African Swine Fever? Transboundary and Emerging Diseases, 65(6), 1588.-1596.
Probst, C., Gethmann, J., Amler, S., Globig, A., Knoll, B., & Conraths, F. J. (2019). The potential role of scavengers in spreading African swine fever among wild boar. Scientific Reports, 9(1), 1-13. https://doi.org/10.1038/s41598-019-47623-5
Probst, C., Globig, A., Knoll, B., Conraths, F. J., & Depner, K. (2017). Behaviour of free ranging wild boar towards their dead fellows: Potential implications for the transmission of African swine fever. Royal Society Open Science, 4(5), 170054.
Sáaez-Royuela, C., & Telleriia, J. (1986). The increased population of the wild boar (Sus scrofa L.) in Europe. Mammal Review, 16(2), 97-101. https://doi.org/10.1111/j.1365-2907.1986.tb00027.x
Sánchez-Cordón, P. J., Montoya, M., Reis, A. L., & Dixon, L. K. (2018). African swine fever: A re-emerging viral disease threatening the global pig industry. The Veterinary Journal. https://doi.org/10.1016/j.tvjl.2017.12.025
Selva, N., Jędrzejewska, B., Jędrzejewski, W., & Wajrak, A. (2005). Factors affecting carcass use by a guild of scavengers in European temperate woodland. Canadian Journal of Zoology, 83(12), 1590-1601. https://doi.org/10.1139/z05-158
Simons, R. R. L., Horigan, V., Ip, S., Taylor, R. A., Crescio, M. I., Maurella, C., … Adkin, A. (2019). A spatial risk assessment model framework for incursion of exotic animal disease into the European Union Member States. Microbial Risk Analysis, 13, 100075. https://doi.org/10.1016/j.mran.2019.05.001
Taylor, R. A., Berriman, A. D., Gale, P., Kelly, L. A., & Snary, E. L. (2019). A generic framework for spatial quantitative risk assessments of infectious diseases: Lumpy skin disease case study. Transboundary and Emerging Diseases, 66(1), 131-143. https://doi.org/10.1111/tbed.12993
Thulke, H. H., & Lange, M. (2017). Simulation-based investigation of ASF spread and control in wildlife without consideration of human non-compliance to biosecurity. EFSA Supporting Publications, 14(11), 1312E.
Thurfjell, H., Spong, G., & Ericsson, G. (2013). Effects of hunting on wild boar Sus scrofa behaviour. Wildlife Biology, 19(1), 87-94.
Truvé, J., & Lemel, J. (2003). Timing and distance of natal dispersal for wild boar Sus scrofa in Sweden. Wildlife Biology, 9(SUPPL 1), 51-57.