Wild boar carcasses in the center of boar activity: crucial risks of ASF transmission

. 2024 ; 11 () : 1497361. [epub] 20241219

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39748874

African swine fever (ASF) is a highly virulent disease rapidly spreading through Europe with fatal consequences for wild boar and domestic pigs. Understanding pathogen transmission among individuals and populations is crucial for disease control. However, the carcass attractiveness for boars was surprisingly almost unstudied. Here, we evaluated if the wild boar carcasses are perceived as an attractant compared to the control sites throughout the year. For this purpose, 28 wild boar carcasses were placed in seven forest stands and continuously monitored in 2019-2020 by camera traps combined with control locations situated at least 200 m away in comparable habitats. Overall, we have recorded 3,602 wild boar visits, from which 3,017 (83.8%) were recorded in locations with placed carcasses and 585 (16.2%) in control locations. Most visits were recorded after sunset and before sunrise, corresponding to common peaks of wild boar activity. On average, the first visits were detected 4.7 days after carcass placement. Contrarily, it was 61.5 days for the control site. In conclusion, we have proven an enormous wild boar carcass attractiveness for boars, which exhibits an entirely new aspect of wild boar behavior. Therefore, the carcass removal is a crucial measure for controlling the spread of ASF.

Zobrazit více v PubMed

Blome S, Gabriel C, Beer M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. (2013) 173:122–30. doi: 10.1016/j.virusres.2012.10.026 PubMed DOI

Blome S, Franzke K, Beer M. African swine fever – a review of current knowledge. Virus Res. (2020) 287:198099. doi: 10.1016/j.virusres.2020.198099 PubMed DOI

Arias M, Jurado C, Gallardo C, Fernández-Pinero J, Sánchez-Vizcaíno JM. Gaps in African swine fever: analysis and priorities. Transbound Emerg Dis. (2018) 65:235–47. doi: 10.1111/tbed.12695, PMID: PubMed DOI

Sauter-Louis C, Conraths FJ, Probst C, Blohm U, Schulz K, Sehl J, et al. . African swine fever in wild boar in europe—a review. Viruses. (2021) 13:717. doi: 10.3390/v13091717, PMID: PubMed DOI PMC

Ståhl K, Boklund A, Podgórski T, Vergne T, Abrahantes JC, Papanikolaou A, et al. . Epidemiological analysis of African swine fever in the European Union during 2022. EFSA J. (2023) 21:e08016. doi: 10.2903/j.efsa.2023.8016, PMID: PubMed DOI PMC

Palencia P, Blome S, Brook RK, Ferroglio E, Jo YS, Linden A, et al. . Tools and opportunities for African swine fever control in wild boar and feral pigs: a review. Eur J Wildl Res. (2023) 69:1–2. doi: 10.1007/s10344-023-01696-w DOI

Tian X, von Cramon-Taubadel S. Economic consequences of African swine fever. Nat Food. (2020) 1:196–7. doi: 10.1038/s43016-020-0061-6 DOI

EFSA . Evaluation of possible mitigation measures to prevent introduction and spread of African swine fever virus through wild boar. EFSA J. (2014) 12:3616. doi: 10.2903/j.efsa.2014.3616 DOI

Chenais E, Depner K, Guberti V, Dietze K, Viltrop A, Ståhl K. Epidemiological considerations on African swine fever in Europe 2014-2018. Porc Heal Manag. (2019) 5:1–10. doi: 10.1186/s40813-018-0109-2 PubMed DOI PMC

Gallardo C, Nurmoja I, Soler A, Delicado V, Simón A, Martin E, et al. . Evolution in Europe of African swine fever genotype II viruses from highly to moderately virulent. Vet Microbiol. (2018) 219:70–9. doi: 10.1016/j.vetmic.2018.04.001, PMID: PubMed DOI

Zhao D, Liu R, Zhang X, Li F, Wang J, Zhang J, et al. . Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerg Microb Infect. (2019) 8:438–47. doi: 10.1080/22221751.2019.1590128, PMID: PubMed DOI PMC

Nurmoja I, Schulz K, Staubach C, Sauter-Louis C, Depner K, Conraths FJ, et al. . Development of African swine fever epidemic among wild boar in Estonia-two different areas in the epidemiological focus. Sci Rep. (2017) 7:12562. doi: 10.1038/s41598-017-12952-w, PMID: PubMed DOI PMC

Oļševskis E, Masiulis M, Seržants M, Lamberga K, Šteingolde Ž, Krivko L, et al. . Do seropositive wild boars pose a risk for the spread of African swine fever? Analysis of field data from Latvia and Lithuania. Pathogens. (2023) 12:723. doi: 10.3390/pathogens12050723, PMID: PubMed DOI PMC

Eblé PL, Hagenaars TJ, Weesendorp E, Quak S, Moonen-Leusen HW, Loeffen WLA. Transmission of African swine fever virus via carrier (survivor) pigs does occur. Vet Microbiol. (2019) 237:108345. doi: 10.1016/j.vetmic.2019.06.018 PubMed DOI

Petrov A, Forth JH, Zani L, Beer M, Blome S. No evidence for long-term carrier status of pigs after African swine fever virus infection. Transbound Emerg Dis. (2018) 65:1318–28. doi: 10.1111/tbed.12881 PubMed DOI

Depner K, Gortazar C, Guberti V, Masiulis M, More S, Oļševskis E, et al. . Epidemiological analyses of African swine fever in the Baltic States and Poland. EFSA J. (2017) 15:e05068. doi: 10.2903/j.efsa.2017.5068, PMID: PubMed DOI PMC

Jori F, Bastos A, Boinas F, Van Heerden J, Heath L, Jourdan-Pineau H, et al. . An updated review of Ornithodoros ticks as reservoirs of African swine fever in sub-Saharan Africa and Madagascar. Pathogens. (2023) 12:1–22. doi: 10.3390/pathogens12030469, PMID: PubMed DOI PMC

Bergmann H, Schulz K, Conraths FJ, Sauter-Louis C. A review of environmental risk factors for african swine fever in european wild boar. Animals. (2021) 11:692. doi: 10.3390/ani11092692, PMID: PubMed DOI PMC

Chenais E, Ståhl K, Guberti V, Depner K. Identification of wild boar–habitat epidemiologic cycle in African swine fever epizootic. Emerg Infect Dis. (2018) 24:810–2. doi: 10.3201/eid2404.172127 PubMed DOI PMC

Probst C, Globig A, Knoll B, Conraths FJ, Depner K. Behaviour of free ranging wild boar towards their dead fellows: potential implications for the transmission of African swine fever. R Soc Open Sci. (2017) 4:170054. doi: 10.1098/rsos.170054, PMID: PubMed DOI PMC

Cukor J, Linda R, Václavek P, Mahlerová K, Šatrán P, Havránek F. Confirmed cannibalism in wild boar and its possible role in African swine fever transmission. Transbound Emerg Dis. (2020) 67:1068–73. doi: 10.1111/tbed.13468, PMID: PubMed DOI

Leivers S, Campbell T, Bodenchuk M, Tomeĉek J. Behavior of wild pigs toward conspecific carcasses: implications for disease transmission in a hot. Semiarid Climate Transbound Emerg Dis. (2023) 2023:1–10. doi: 10.1155/2023/4195199 DOI

Arzumanyan H, Hakobyan S, Avagyan H, Izmailyan R, Nersisyan N, Karalyan Z. Possibility of long-term survival of African swine fever virus in natural conditions. Vet World. (2021) 14:854–9. doi: 10.14202/vetworld.2021.854-859, PMID: PubMed DOI PMC

McKercher PD, Blackwell JH, Murphy R, Callis JJ, Panina GF, Civardi A, et al. . Survival of swine vesicular disease virus in “prosciutto di Parma” (Parma ham). Can Inst Food Sci Technol J. (1985) 18:163–7. doi: 10.1016/S0315-5463(85)71775-0 DOI

Mebus C, Arias M, Pineda JM, Tapiador J, House C, Sbnchez-Vizcainob JM. Survival of several porcine viruses in different Spanish dry-cured meat products. Food Chemisrry. (1997) 59:555–559.

Carlson J, Fischer M, Zani L, Eschbaumer M, Fuchs W, Mettenleiter T, et al. . Stability of African swine fever virus in soil and options to mitigate the potential transmission risk. Pathogens. (2020) 9:1–12. doi: 10.3390/pathogens9110977, PMID: PubMed DOI PMC

Prodelalova J, Kavanova L, Salat J, Moutelikova R, Kobzova S, Krasna M, et al. . Experimental evidence of the long-term survival of infective African swine fever virus strain Ba71V in soil under different conditions. Pathogens. (2022) 11:648. doi: 10.3390/pathogens11060648, PMID: PubMed DOI PMC

Bowden CF, Grinolds J, Franckowiak G, McCallister L, Halseth J, Cleland M, et al. . Evaluation of the effect of hydrated lime on the scavenging of feral swine (Sus scrofa) carcasses and implications for managing carcass-based transmission of african swine fever virus. J Wildl Dis. (2023) 59:49–60. doi: 10.7589/JWD-D-22-00061, PMID: PubMed DOI

Juszkiewicz M, Walczak M, Woźniakowski G, Podgórska K. African swine fever: transmission, spread, and control through biosecurity and disinfection. Including Polish Trends Viruses. (2023) 15:1–17. doi: 10.3390/v15112275, PMID: PubMed DOI PMC

Morelle K, Jezek M, Licoppe A, Podgorski T. Deathbed choice by ASF-infected wild boar can help find carcasses. Transbound Emerg Dis. (2019) 66:1821–6. doi: 10.1111/tbed.13267, PMID: PubMed DOI

Cukor J, Linda R, Václavek P, Šatrán P, Mahlerová K, Vacek Z, et al. . Wild boar deathbed choice in relation to ASF: are there any differences between positive and negative carcasses? Prev Vet Med. (2020) 177:104943. doi: 10.1016/j.prevetmed.2020.104943 PubMed DOI

Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci. (2007) 11:1633–44. doi: 10.5194/hess-11-1633-2007 DOI

Cwynar P, Stojkov J, Wlazlak K. African swine fever status in Europe. Viruses. (2019) 11:310. doi: 10.3390/v11040310, PMID: PubMed DOI PMC

Rogoll L, Schulz K, Staubach C, Oļševskis E, Seržants M, Lamberga K, et al. . Identification of predilection sites for wild boar carcass search based on spatial analysis of Latvian ASF surveillance data. Sci Rep. (2024) 14:382–12. doi: 10.1038/s41598-023-50477-7, PMID: PubMed DOI PMC

Hollander M, Wolfe DA. Nonparametric statistical methods. New York: John Wiley & Sons; (1973).

P. R . Algorithm AS 181: the W test for normality. Appl Stat. (1982) 31:176–80. doi: 10.2307/2347986 DOI

Fox J. Applied regression analysis and generalized linear models. Third ed Sage; (2016). Thousand Oaks, California: SAGE Publications. p. 816.

Jammalamadaka SR, Sen GA. Topics in circular statistics, sections 3.3.2 and 3.4.1. Singapore: World Scientific Press; (2001).

Batschelet E. Circular statistics in biology. (1981). New York: Academic Press. p. 371.

R Core Team . R: A language and environment for statistical Computing. (2024). Available at: https://www.r-project.org/

Fox J, Weisberg S. An R companion to applied Regression. 3rd edn. McMaster University, Canada, University of Minnesota, USA: SAGE Publications, Inc. (2019). p. 608.

Agostinelli C, Lund U. R package “circular”: Circular statistics (version 0.5–1) (2024). Available at: https://cran.r-project.org/package=circular (Accessed October 17, 2023).

Allepuz A, Hovari M, Masiulis M, Ciaravino G, Beltrán-Alcrudo D. Targeting the search of African swine fever-infected wild boar carcasses: a tool for early detection. Transbound Emerg Dis. (2022) 69:e1682–92. doi: 10.1111/tbed.14504 PubMed DOI PMC

Carrau T, Malakauskas A, Masiulis M, Bušauskas P, Japertas S, Blome S, et al. . Composting of wild boar carcasses in Lithuania leads to inactivation of African swine fever virus in wintertime. Pathogens. (2023) 12:285. doi: 10.3390/pathogens12020285, PMID: PubMed DOI PMC

Ward MP. The African swine fever threat to Australia. Microbiol Aust. (2022) 43:183–5. doi: 10.1071/ma22060 DOI

Probst C, Gethmann J, Amendt J, Lutz L, Teifke JP, Conraths FJ. Estimating the postmortem interval of wild boar carcasses. Vet Sci. (2020) 7:10006. doi: 10.3390/vetsci7010006 PubMed DOI PMC

Frauendorf M, Gethöffer F, Siebert U, Keuling O. The influence of environmental and physiological factors on the litter size of wild boar (Sus scrofa) in an agriculture dominated area in Germany. Sci Total Environ. (2016) 541:877–82. doi: 10.1016/j.scitotenv.2015.09.128, PMID: PubMed DOI

Kamieniarz R, Jankowiak Ł, Fratczak M, Panek M, Wojtczak J, Tryjanowski P. The relationship between hunting methods and the sex, age and body mass of wild boar sus scrofa. Animals. (2020) 10:1–10. doi: 10.3390/ani10122345, PMID: PubMed DOI PMC

Schley L, Roper TJ. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mammal Rev. (2003) 33:43–56.

Herrero J, García-Serrano A, Couto S, Ortuño VM, García-González R. Diet of wild boar Sus scrofa L. and crop damage in an intensive agroecosystem. Eur J Wildl Res. (2006) 52:245–50. doi: 10.1007/s10344-006-0045-3 DOI

Podgórski T, Apollonio M, Keuling O. Contact Rates in Wild Boar Populations: Implications for Disease Transmission. J Wildl Manag. (2018) 82:1210–8. doi: 10.1002/jwmg.21480 DOI

Keuling O, Stier N, Roth M. Annual and seasonal space use of different age classes of female wild boar Sus scrofa L. Eur J Wildl Res. (2008) 54:403–12. doi: 10.1007/s10344-007-0157-4 DOI

Podgórski T, Baś G, Jȩdrzejewska B, Sönnichsen L, Śniezko S, Jȩdrzejewski W, et al. . Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. J Mammal. (2013) 94:109–19. doi: 10.1644/12-MAMM-A-038.1 DOI

Podgórski T, Śmietanka K. Do wild boar movements drive the spread of African swine fever? Transbound Emerg Dis. (2018) 65:1588–96. doi: 10.1111/tbed.12910, PMID: PubMed DOI

Massei G, Genov PV, Staines BW, Gorman ML. Factors influencing home range and activity of wild boar (Sus scrofa) in a Mediterranean coastal area. J Zool. (1997) 242:411–23. doi: 10.1111/j.1469-7998.1997.tb03845.x DOI

Russo L, Massei G, Genov PV. Daily home range and activity of wild boar in a mediterranean area free from hunting. Ethol Ecol Evol. (1997) 9:287–94. doi: 10.1080/08927014.1997.9522888 DOI

Sodeikat G, Pohlmeyer K. Escape movements of family groups of wild boar Sus scrofa influenced by drive hunts in Lower Saxony, Germany. Wildlife biology. Nordic Council Wildl Res. (2003) 9:43–9. doi: 10.2981/wlb.2003.063 DOI

Bieber C, Ruf T. Population dynamics in wild boar Sus scrofa: ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J Appl Ecol. (2005) 42:1203–13. doi: 10.1111/j.1365-2664.2005.01094.x DOI

Caley P. Movements, activity patterns and habitat use of feral pigs (Sus scrofa) in a tropical habitat. Wildl Res. (1997) 24:77–87. doi: 10.1071/WR94075 DOI

Maillard D, Baubet E, Vassant J, Brandt S. Connaissances sur la biologie du sanglier: Utilisation de l’espace et régime alimentaire (2008). Available at: https://www.researchgate.net/publication/237505433 (Accessed October 17, 2023).

Baskin L, Dannell K. Ecology of ungulates: A handbook of species in Eastern Europe and northern and Central Asia. Berlin: Springer Heidelberg; (2013).

Truvé J, Lemel J. Timing and distance of natal dispersal for wild boar Sus scrofa in Sweden. Wildl Biol Nordic Council Wildl Res. (2003) 9:51–7. doi: 10.2981/wlb.2003.056 DOI

Podgórski T, Scandura M, Jedrzejewska B. Next of kin next door - philopatry and socio-genetic population structure in wild boar. J Zool. (2014) 294:190–7. doi: 10.1111/jzo.12167 DOI

Boitani L, Mattei L, Nonis D, Corsi F. Spatial and activity patterns of wild boars in Tuscany, Italy. J Mammal. (1994) 75:600–12. doi: 10.2307/1382507 DOI

Johann F, Handschuh M, Linderoth P, Dormann CF, Arnold J. Adaptation of wild boar (Sus scrofa) activity in a human-dominated landscape. BMC Ecol. (2020) 20:4. doi: 10.1186/s12898-019-0271-7, PMID: PubMed DOI PMC

Cukor J, Linda R, Mahlerová K, Vacek Z, Faltusová M, Marada P, et al. . Different patterns of human activities in nature during Covid-19 pandemic and African swine fever outbreak confirm direct impact on wildlife disruption. Sci Rep. (2021) 11:20791. doi: 10.1038/s41598-021-99862-0, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...