Experimental Evidence of the Long-Term Survival of Infective African Swine Fever Virus Strain Ba71V in Soil under Different Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QJ1920187
Ministry of Agriculture
RO0518
Ministry of Agriculture
PubMed
35745502
PubMed Central
PMC9228371
DOI
10.3390/pathogens11060648
PII: pathogens11060648
Knihovny.cz E-zdroje
- Klíčová slova
- ASFV, field isolates, hemadsorption, infectivity testing, stability,
- Publikační typ
- časopisecké články MeSH
The survival of African swine fever virus (ASFV) on different matrices and its infectivity in wild as well as domestic swine is still a matter of interest. ASFV is resistant to environmental effects; this fact is enhanced by the presence of organic material. Therefore, the aim of this work was to determine the ability of laboratory ASFV to survive in soil at different temperatures (4 and 22 °C) and with and without the presence of blood using culture procedures. The suitability of the procedure for determining the viability and titre of the ASFV field strain by the hemadsorption method was also verified, when a higher decrease in virus infectivity in the case of clay compared with peat was demonstrated. The stability of the virus was clearly temperature-dependent, the infectious virus was detected after 112 days, and the viral DNA was still detected in the matrix 210 days after inoculation in a relatively high and stable concentration (between 106 and 107 genome equivalents/mL). Based on this knowledge, soil and other environmental samples could provide rapid and reliable information on the disease outbreak and serve as indicators of the risk posed by the affected locality.
State Veterinary Institute Jihlava Rantirovska 20 586 01 Jihlava Czech Republic
Veterinary Research Institute Hudcova 70 602 00 Brno Czech Republic
Zobrazit více v PubMed
Sánchez-Vizcaíno J.M., Laddomada A., Arias M.L. African Swine Fever. In: Zimmerman J.J., Karriker L.A., Ramirez A., Schwartz K.J., Stevenson G.W., Zhang J., editors. Diseases of Swine. 11th ed. John Wiley and Sons, Inc.; Hoboken, NY, USA: 2019. pp. 443–452.
Chenais E., Ståhl K., Guberti V., Depner K. Identification of wild boar-habitat epidemiologic cycle in African swine fever epizootic. Emerg. Infect. Dis. 2018;24:810–812. doi: 10.3201/eid2404.172127. PubMed DOI PMC
Plowright W. African swine fever. In: Davis J.W., Karstand L.H., Trainer D.O., editors. Infectious Disease of Wild Mammals. 2nd ed. Iowa State University Press; Ames, IA, USA: 1981. pp. 178–190.
EFSA AHAW Panel Scientific opinion on African swine fever. EFSA J. 2015;13:4163. doi: 10.2903/j.efsa.2015.4163. DOI
Guinat C., Gogin A., Blome S., Guenther K., Pollin R., Pfeiffer D.U., Dixon L. Transmission routes of African swine fever virus to domestic pigs: Current knowledge and future research directions. Vet. Rec. 2016;178:262–267. doi: 10.1136/vr.103593. PubMed DOI PMC
Probst C., Globing A., Knoll B., Conraths F.J., Depner C. Behaviour of free ranging wild boar towards their dead fellows: Potential implications for the transmission of African swine fever. R. Soc. Open Sci. 2017;4:170054. doi: 10.1098/rsos.170054. PubMed DOI PMC
Masiulis M., Bašauskas P., Jonušaitis V., Pridotkas G. Potential role of domestic pig carcasses disposed in the forest for the transmission of African swine fever. Berl. Münchener Tierärztliche Wochenschr. 2018;132:148–150. doi: 10.2376/0005-9366-18014. DOI
Cukor J., Linda R., Václavek P., Mahlerová K., Šatrán P., Havránek F. Confirmed cannibalism in wild boar and its possible role in African swine fever transmission. Transbound. Emerg. Dis. 2020;67:1068–1073. doi: 10.1111/tbed.13468. PubMed DOI
Guberti V., Khomenko S., Masiulis M., Kerba S. Animal Production and Health Manual. Volume 22. FAO, OIE and EC; Rome, Italy: 2019. African swine fever in wild boar ecology and biosecurity. DOI
Arzumanyan H., Hakobyan S., Savagyan H., Izmaylian R., Nersisyan N., Karalyan Z. Possibility of long-term survival of African swine fever virus in natural conditions. Vet. World. 2021;14:854–859. doi: 10.14202/vetworld.2021.854-859. PubMed DOI PMC
Andrés G., Charro D., Matamoros T., Dillard R.S., Abrescia N.G.A. The cryo-EM structure of African swine fever virus unravels a unique architecture comprising two icosahedral protein capsids and two lipoprotein membranes. J. Biol. Chem. 2020;295:1–12. doi: 10.1074/jbc.AC119.011196. PubMed DOI PMC
Kavanová L., Prodělalová J., Nedbalcová K., Matiašovic J., Volf J., Faldyna M., Salát J. Immune response of porcine alveolar macrophages to a concurrent infection with porcine reproductive and respiratory syndrome virus and Haemophilus parasuis in vitro. Vet. Microbiol. 2015;180:28–35. doi: 10.1016/j.vetmic.2015.08.026. PubMed DOI
Milne I., Stephen G., Bayer M., Cock P.J.A., Pritchard L., Cardle L., Shaw P.D., Marshall D. Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform. 2013;14:193–202. doi: 10.1093/bib/bbs012. PubMed DOI
Detection of African Swine Fever Virus (ASFV) by the OIE Real-Time Polymerase Chain Reaction (PCR) 1, King et al., 2003, Rev 6. 2021. [(accessed on 14 March 2022)]. Available online: https://asf-referencelab.info/asf/images/ficherosasf/PROTOCOLOS-EN/SOP-ASF-PCR-2_REV2021.pdf.
Slana I., Kralik P., Kralova A., Pavlik I. On-farm spread of Mycobacterium avium subsp. paratuberculosis in raw milk studied by IS900 and F57 competitive real time quantitative PCR and culture examination. Int. J. Food Microbiol. 2008;128:250–257. doi: 10.1016/j.ijfoodmicro.2008.08.013. PubMed DOI
African Swine Fever Virus (ASFV) Isolation on Porcine Alveolar Macrophages and Haemadsorption Test. REV. 2013. [(accessed on 14 March 2022)]. Available online: https://asf-referencelab.info/asf/images/ficherosasf/PROTOCOLOS-EN/SOP-ASF-V2.pdf.
Reed L.J., Muench H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938;27:493–497. doi: 10.1093/oxfordjournals.aje.a118408. DOI
Plowright W., Parker J. The stability of African swine fever virus with particular reference to heat and pH inactivation. Arch. Gesamte Virusforsch. 1967;21:383–402. doi: 10.1007/BF01241738. PubMed DOI
Petrini S., Feliziani F., Casciari C., Giammarioli M., Torresi C., De Mia G.M. Survival of African swine fever virus (ASFV) in various traditional Italian dry-cured meat products. Prev. Vet. Med. 2019;162:126–130. doi: 10.1016/j.prevetmed.2018.11.013. PubMed DOI
Olesen A.S., Lohse L., Boklund A., Halasa T., Belsham G.J., Rasmussen T.B. Short time window for transmissibility of African swine fever virus from a contaminated environment. Transbound. Emerg. Dis. 2018;65:1024–1032. doi: 10.1111/tbed.12837. PubMed DOI
Davies K., Goatley L.C., Guinat C., Netherton C.L., Gubbins S., Dixon L.K., Reis A.L. Survival of African Swine Fever Virus in Excretions from Pigs Experimentally Infected with the Georgia 2007/1 Isolate. Transbound. Emerg. Dis. 2017;64:425–431. doi: 10.1111/tbed.12381. PubMed DOI PMC
Frant P.M., Gal-Cisoń B., Bocian Ł., Ziętek-Barszcz A., Niemczuk K., Woźniakowski G., Szczotka-Bochniarz A. African swine fever in wild boar (Poland 2020): Passive and active surveillance analysis and further perspectives. Pathogens. 2021;10:1219. doi: 10.3390/pathogens10091219. PubMed DOI PMC
European Food Safety Authority (EFSA) Desmetch D., Gortázar Schmidt C., Grigaliuniene V., Helyes G., Kantere M., Korytarova D., Linden A., Miteva A., Neghirla A., et al. Epidemiological analysis of African swine fever in the European Union (September 2019 to August 2020) EFSA J. 2021;19:e06572. PubMed PMC
Mačiulskis P., Masiulis M., Pridotkas G., Buitkuvienė J., Jurgelevičius V., Jacevičienė I., Zagrabskaitė R., Zani L., Pilevičienė S. The African Swine fever epidemic in wild boar (Sus scrofa) in Lithuania (2014–2018) Vet. Sci. 2020;7:15. doi: 10.3390/vetsci7010015. PubMed DOI PMC
Carlson J., Fischer M., Zani L., Eschbaumer M., Fuchs W., Mettenleiter T., Beer M., Blome S. Stability of African Swine Fever Virus in Soil and Options to Mitigate the Potential Transmission Risk. Pathogens. 2020;9:977. doi: 10.3390/pathogens9110977. PubMed DOI PMC
Mazur-Panasiuk N., Woźniakowski G. Natural inactivation of African swine fever virus in tissues: Influence of temperature and environmental conditions on virus survival. Vet. Microbiol. 2020;242:108609. doi: 10.1016/j.vetmic.2020.108609. PubMed DOI
Hakobyan S.A., Ross P.A., Bayramyan N.V., Poghosyan A.A., Avetisyan A.S., Avagyan H.R., Hakobyan L.H., Abroyan L.O., Harutyunova L.J., Karalyan Z.A. Experimental models of ecological niches for African swine fever virus. Vet. Microbiol. 2022;266:109365. doi: 10.1016/j.vetmic.2022.109365. PubMed DOI
Zani L., Masiulis M., Busauskas P., Dietze K., Prodotkas G., Globig A., Blome S., Mettenleiter T., Depner K., Karveliene B. African swine fever survival in buried wild boar carcasses. Transbound. Emerg. Dis. 2020;67:2086–2092. doi: 10.1111/tbed.13554. PubMed DOI
Lee K.-L., Choi Y., Yoo J., Hwang J., Jeong H.-G., Jheong W.-H., Kim S.-H. Identification of African swine fever virus genomic DNAs in wild boar habitats within outbreak regions in South Korea. J. Vet. Sci. 2021;22:e28. doi: 10.4142/jvs.2021.22.e28. PubMed DOI PMC
Wild boar carcasses in the center of boar activity: crucial risks of ASF transmission