Experience shapes wild boar spatial response to drive hunts
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No. A_27_23
Internal Grant Agency of the Faculty of Forestry and Wood Sciences of the Czech University of Life Sciences in Prague
QK1910462
Ministry of Agriculture of the Czech Republic (NAZV)
No. 43200/1322/3265
"Excellent Teams" grant from the Faculty of Forestry and Wood Sciences of the Czech University of Life Sciences Prague
PubMed
39198665
PubMed Central
PMC11358132
DOI
10.1038/s41598-024-71098-8
PII: 10.1038/s41598-024-71098-8
Knihovny.cz E-zdroje
- Klíčová slova
- Sus scrofa, GPS tracking, Human disturbance, Spatial behaviour,
- MeSH
- chování zvířat * fyziologie MeSH
- divoká zvířata fyziologie MeSH
- let zvířat fyziologie MeSH
- lidé MeSH
- lov MeSH
- Sus scrofa * fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Švédsko MeSH
Human-induced disturbances of the environment are rapid and often unpredictable in space and time, exposing wildlife to strong selection pressure favouring plasticity in specific traits. Measuring wildlife behavioural plasticity in response to human-induced disturbances such as hunting pressures is crucial in understanding population expansion in the highly plastic wild boar species. We collected GPS-based movement data from 55 wild boars during drive hunts over three hunting seasons (2019-2022) in the Czech Republic and Sweden to identify behavioural plasticity in space use and movement strategies over a range of experienced hunting disturbances. Daily distance, daily range, and daily range overlap with hunting area were not affected by hunting intensity but were clearly related to wild boar hunting experience. On average, the post-hunt flight distance was 1.80 km, and the flight duration lasted 25.8 h until they returned to their previous ranging area. We detected no relationship in flight behaviour to hunting intensity or wild boar experience. Wild boar monitored in our study showed two behavioural responses to drive hunts, "remain" or "leave". Wild boars tended to "leave" more often with increasing hunting experience. Overall, this study highlights the behavioural plasticity of wild boar in response to drive hunts.
Zobrazit více v PubMed
Acasuso-Rivero, C., Murren, C. J., Schlichting, C. D. & Steiner, U. K. Adaptive phenotypic plasticity for life-history and less fitness-related traits. Proc. R. Soc. B Biol. Sci.286, 20190653 (2019).10.1098/rspb.2019.0653 PubMed DOI PMC
Price, T. D., Qvarnström, A. & Irwin, D. E. The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. Lond. Ser. B Biol. Sci.270, 1433–1440 (2003).10.1098/rspb.2003.2372 PubMed DOI PMC
Lalejini, A., Ferguson, A. J., Grant, N. A. & Ofria, C. Adaptive phenotypic plasticity stabilizes evolution in fluctuating environments. Front. Ecol. Evol.10.3389/fevo.2021.715381 (2021).10.3389/fevo.2021.715381 DOI
Sih, A., Cote, J., Evans, M., Fogarty, S. & Pruitt, J. Ecological implications of behavioural syndromes. Ecol. Lett.15, 278–289 (2012). 10.1111/j.1461-0248.2011.01731.x PubMed DOI
Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol.17, 20–29 (2008). 10.1111/j.1365-294X.2007.03428.x PubMed DOI
Whitman, D. & Agrawal, A. What is phenotypic plasticity and why is it important?. Phenotypic Plasticity Insects10.1201/b10201 (2009).10.1201/b10201 DOI
Sih, A., Ferrari, M. C. O. & Harris, D. J. Evolution and behavioural responses to human-induced rapid environmental change. Evolut. Appl.4, 367–387 (2011).10.1111/j.1752-4571.2010.00166.x PubMed DOI PMC
Herrero, J., Irizar, I. & Laskurain, N. Wild boar frugivory in the Atlantic Basque Country. Galemys Boletín Informativo de la Sociedad Española Para la Conservación y Estudio de los Mamíferos16(1), 125–133 (2004).
Castillo-Contreras, R. et al. Wild boar in the city: Phenotypic responses to urbanisation. Sci. Total Environ.773, 145593 (2021). 10.1016/j.scitotenv.2021.145593 PubMed DOI
Vetter, S. G., Puskas, Z., Bieber, C. & Ruf, T. How climate change and wildlife management affect population structure in wild boars. Sci. Rep.10, 7298 (2020). 10.1038/s41598-020-64216-9 PubMed DOI PMC
De la Torre, A. et al. Assessing the risk of African swine fever introduction into the European union by wild boar. Transbound. Emerg. Dis.62, 272–279 (2015). 10.1111/tbed.12129 PubMed DOI
Griciuvienė, L., Janeliūnas, Ž, Jurgelevičius, V. & Paulauskas, A. The effects of habitat fragmentation on the genetic structure of wild boar (Susscrofa) population in Lithuania. BMC Genom. Data22, 53 (2021). 10.1186/s12863-021-01008-8 PubMed DOI PMC
Rutten, A. et al. Analysing the recolonisation of a highly fragmented landscape by wild boar using a landscape genetic approach. Wildl. Biol.2019, wlb.00542 (2019).10.2981/wlb.00542 DOI
Orłowska, L., Rembacz, W. & Florek, C. Carcass weight, condition and reproduction of wild boar harvested in north-western Poland. Pest Manag. Sci.69, 367–370 (2013). 10.1002/ps.3355 PubMed DOI
Thurfjell, H., Spong, G. & Ericsson, G. Effects of hunting on wild boar Susscrofa behaviour. Wildl. Biol.19, 87–93 (2013).10.2981/12-027 DOI
Quirós-Fernández, F., Marcos, J., Acevedo, P. & Gortázar, C. Hunters serving the ecosystem: The contribution of recreational hunting to wild boar population control. Eur. J. Wildl. Res.63, 57 (2017).10.1007/s10344-017-1107-4 DOI
Mery, F. & Burns, J. G. Behavioural plasticity: An interaction between evolution and experience. Evol. Ecol.24, 571–583 (2010).10.1007/s10682-009-9336-y DOI
Thurfjell, H., Ciuti, S. & Boyce, M. S. Learning from the mistakes of others: How female elk (Cervuselaphus) adjust behaviour with age to avoid hunters. PLOS ONE12, e0178082 (2017). 10.1371/journal.pone.0178082 PubMed DOI PMC
Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool.68, 619–640 (1990).10.1139/z90-092 DOI
Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E. & Brashares, J. S. Landscapes of fear: Spatial patterns of risk perception and response. Trends Ecol. Evol.34, 355–368 (2019). 10.1016/j.tree.2019.01.004 PubMed DOI
Sol, D., Lapiedra, O. & González-Lagos, C. Behavioural adjustments for a life in the city. Anim. Behav.85, 1101–1112 (2013).10.1016/j.anbehav.2013.01.023 DOI
Bonnot, N. et al. Interindividual variability in habitat use: Evidence for a risk management syndrome in roe deer?. Behav. Ecol.26, 105–114. 10.1093/beheco/aru169 (2015).10.1093/beheco/aru169 DOI
Belgrad, B. A. & Griffen, B. D. Predator–prey interactions mediated by prey personality and predator hunting mode. Proc. R. Soc. B Biol. Sci.283, 20160408 (2016).10.1098/rspb.2016.0408 PubMed DOI PMC
Madden, J. R. & Whiteside, M. A. Selection on behavioural traits during ‘unselective’ harvesting means that shy pheasants better survive a hunting season. Anim. Behav.87, 129–135 (2014).10.1016/j.anbehav.2013.10.021 DOI
Keuling, O. et al. Mortality rates of wild boar Susscrofa L. in central Europe. Eur. J. Wildl. Res.59, 805–814 (2013).10.1007/s10344-013-0733-8 DOI
Sweitzer, R. A., Van Vuren, D., Gardner, I. A., Boyce, W. M. & Waithman, J. D. Estimating sizes of wild pig populations in the north and central coast regions of California. J. Wildl. Manag.64, 531–543 (2000).10.2307/3803251 DOI
Coltman, D. W. et al. Undesirable evolutionary consequences of trophy hunting. Nature426, 655–658 (2003). 10.1038/nature02177 PubMed DOI
Douhard, M., Festa-Bianchet, M., Pelletier, F., Gaillard, J.-M. & Bonenfant, C. Changes in horn size of Stone’s sheep over four decades correlate with trophy hunting pressure. Ecol. Appl.26, 309–321 (2016). 10.1890/14-1461 PubMed DOI
Ciuti, S. et al. Human selection of elk behavioural traits in a landscape of fear. Proc. R. Soc. B Biol. Sci.279, 4407–4416 (2012).10.1098/rspb.2012.1483 PubMed DOI PMC
Leclerc, M., Zedrosser, A., Swenson, J. E. & Pelletier, F. Hunters select for behavioral traits in a large carnivore. Sci. Rep.9, 12371 (2019). 10.1038/s41598-019-48853-3 PubMed DOI PMC
Lone, K., Loe, L. E., Meisingset, E. L., Stamnes, I. & Mysterud, A. An adaptive behavioural response to hunting: Surviving male red deer shift habitat at the onset of the hunting season. Anim. Behav.102, 127–138 (2015).10.1016/j.anbehav.2015.01.012 DOI
Keuling, O. & Massei, G. Does hunting affect the behavior of wild pigs?. Hum. Wildl. Interact.15, 11 (2021).
Chassagneux, A. et al. Should I stay or should I go? Determinants of immediate and delayed movement responses of female red deer (Cervuselaphus) to drive hunts. PLOS ONE15, e0228865 (2020). 10.1371/journal.pone.0228865 PubMed DOI PMC
Lima, S. L. Stress and decision making under the risk of predation: Recent developments from behavioral, reproductive, and ecological perspectives. In Advances in the Study of Behavior Vol. 27 (eds Møller, A. P. et al.) 215–290 (Academic Press, 1998).
Iijima, H. The effects of landscape components, wildlife behavior and hunting methods on hunter effort and hunting efficiency of sika deer. Wildl. Biol.2017, wlb.00329 (2017).10.2981/wlb.00329 DOI
Little, A. R. et al. Hunting intensity alters movement behaviour of white-tailed deer. Basic Appl. Ecol.17, 360–369 (2016).10.1016/j.baae.2015.12.003 DOI
Sullivan, J. D., Ditchkoff, S. S., Collier, B. A., Ruth, C. R. & Raglin, J. B. Recognizing the danger zone: Response of female white-tailed to discrete hunting events. Wildl. Biol.2018, 1–8 (2018).10.2981/wlb.00455 DOI
Chassagneux, A. et al. Proximity to the risk and landscape features modulate female red deer movement patterns over several days after drive hunts. Wildl. Biol.2019, 1–10 (2019).10.2981/wlb.00545 DOI
Garshelis, D. L., Noyce, K. V. & St-Louis, V. Population reduction by hunting helps control human–wildlife conflicts for a species that is a conservation success story. PLOS ONE15, e0237274 (2020). 10.1371/journal.pone.0237274 PubMed DOI PMC
Hagen, R., Haydn, A. & Suchant, R. Estimating red deer (Cervuselaphus) population size in the Southern Black Forest: The role of hunting in population control. Eur. J. Wildl. Res.64, 42 (2018).10.1007/s10344-018-1204-z DOI
Slabbekoorn, H. Songs of the city: Noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Anim. Behav.85, 1089–1099 (2013).10.1016/j.anbehav.2013.01.021 DOI
Augustsson, E. et al. Density-dependent dinner: Wild boar overuse agricultural land at high densities. Eur. J. Wildl. Res.70, 15 (2024).10.1007/s10344-024-01766-7 DOI
Bevins, S. N., Pedersen, K., Lutman, M. W., Gidlewski, T. & Deliberto, T. J. Consequences associated with the recent range expansion of nonnative feral swine. BioScience64, 291–299 (2014).10.1093/biosci/biu015 DOI
Gamelon, M. et al. The relationship between phenotypic variation among offspring and mother body mass in wild boar: evIdence of coin-flipping?. J. Anim. Ecol.82, 937–945 (2013). 10.1111/1365-2656.12073 PubMed DOI
Podgórski, T. et al. Spatiotemporal behavioral plasticity of wild boar (Susscrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. J. Mammal.94, 109–119 (2013).10.1644/12-MAMM-A-038.1 DOI
Stillfried, M. et al. Secrets of success in a landscape of fear: Urban Wild boar adjust risk perception and tolerate disturbance. Front. Ecol. Evol.10.3389/fevo.2017.00157 (2017).10.3389/fevo.2017.00157 DOI
Sodeikat, G. & Pohlmeyer, K. Impact of drive hunts on daytime resting site areas of wild boar family groups (Susscrofa L.). Wildl. Biol. Pract.3, 28–38 (2007).10.2461/wbp.2007.3.4 DOI
Sodeikat, G. & Pohlmeyer, K. Escape movements of family groups of wild boar Susscrofa influenced by drive hunts in Lower Saxony, Germany. Wildl. Biol.9, 43–49 (2003).10.2981/wlb.2003.063 DOI
Johann, F., Handschuh, M., Linderoth, P., Dormann, C. F. & Arnold, J. Adaptation of wild boar (Susscrofa) activity in a human-dominated landscape. BMC Ecol.20, 4 (2020). 10.1186/s12898-019-0271-7 PubMed DOI PMC
Drimaj, J. et al. Intensive hunting pressure changes local distribution of wild boar. Hum. Wildl. Interact.15, 9 (2021).
Geisser, H. & Reyer, H.-U. Efficacy of hunting, feeding, and fencing to reduce crop damage by wild boars. J. Wildl. Manag.68, 939–946 (2004).10.2193/0022-541X(2004)068[0939:EOHFAF]2.0.CO;2 DOI
Keuling, O., Stier, N. & Roth, M. How does hunting influence activity and spatial usage in wild boar Susscrofa L.?. Eur. J. Wildl. Res.54, 729 (2008).10.1007/s10344-008-0204-9 DOI
Maillard, D. Summer and hunting season home ranges of wild boar (Susscrofa) in two habitats in France. GWS19, 281–301 (2002).
Scillitani, L., Monaco, A. & Toso, S. Do intensive drive hunts affect wild boar () spatial behaviour in Italy? Some evidences and management implications. Eur. J. Wildl. Res.56, 307–318. 10.1007/s10344-009-0314-z(2009).10.1007/s10344-009-0314-z DOI
Saxon-Mills, E. C., Moseby, K., Blumstein, D. T. & Letnic, M. Prey naïveté and the anti-predator responses of a vulnerable marsupial prey to known and novel predators. Behav. Ecol. Sociobiol.72, 151 (2018).10.1007/s00265-018-2568-5 DOI
Wiskirchen, K. H., Jacobsen, T. C., Ditchkoff, S. S., Demarais, S. & Gitzen, R. A. Behaviour of a large ungulate reflects temporal patterns of predation risk. Wildl. Res.49, 500–512 (2022).10.1071/WR21047 DOI
Griffin, A. S., Evans, C. S. & Blumstein, D. T. Learning specificity in acquired predator recognition. Anim. Behav.62, 577–589 (2001).10.1006/anbe.2001.1781 DOI
Bonnot, N. C. et al. Stick or twist: Roe deer adjust their flight behaviour to the perceived trade-off between risk and reward. Anim. Behav.124, 35–46 (2017).10.1016/j.anbehav.2016.11.031 DOI
Kiffner, C. et al. Interspecific variation in large mammal responses to human observers along a conservation gradient with variable hunting pressure. Anim. Conserv.17, 603–612 (2014).10.1111/acv.12131 DOI
Blake, C. A. & Gabor, C. R. Effect of prey personality depends on predator species. Behav. Ecol.25, 871–877 (2014).10.1093/beheco/aru041 DOI
Stankowich, T. & Coss, R. G. Effects of risk assessment, predator behavior, and habitat on escape behavior in Columbian black-tailed deer. Behav. Ecol.18, 358–367 (2007).10.1093/beheco/arl086 DOI
Tolon, V. et al. Responding to spatial and temporal variations in predation risk: Space use of a game species in a changing landscape of fear. Can. J. Zool.87, 1129–1137 (2009).10.1139/Z09-101 DOI
Jeppesen, J. L. Impact of human disturbance on home range, movements and activity of red deer (Cervuselaphus) in a Danish environment. Danish Rev. Game Biol. (Denmark)13, 2–30 (1987).
Sommer-Trembo, C., Earp, C., Jourdan, J., Bierbach, D. & Plath, M. Predator experience homogenizes consistent individual differences in predator avoidance. J. Ethol.34, 155–165 (2016).10.1007/s10164-016-0460-1 DOI
Marantz, S. A. et al. Impacts of human hunting on spatial behavior of white-tailed deer (Odocoileusvirginianus). Can. J. Zool.10.1139/cjz-2016-0125 (2016).10.1139/cjz-2016-0125 DOI
Broom, M. & Ruxton, G. D. You can run—Or you can hide: Optimal strategies for cryptic prey against pursuit predators. Behav. Ecol.16, 534–540 (2005).10.1093/beheco/ari024 DOI
Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. Biol. Sci.272, 2627–2634 (2005). PubMed PMC
Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Nat.153, 649–659 (1999). 10.1086/303202 PubMed DOI
Proffitt, K. M., Grigg, J. L., Hamlin, K. L. & Garrott, R. A. Contrasting effects of wolves and human hunters on elk behavioral responses to predation risk. J. Wildl. Manag.73, 345–356 (2009).10.2193/2008-210 DOI
Manor, R. & Saltz, D. Effects of human disturbance on use of space and flight distance of mountain Gazelles. J. Wildl. Manag.69, 1683–1690 (2005).10.2193/0022-541X(2005)69[1683:EOHDOU]2.0.CO;2 DOI
Miller, S. G., Knight, R. L. & Miller, C. K. Wildlife responses to pedestrians and dogs. Wildl. Soc. Bull.1973–2006(29), 124–132 (2001).
Wielgus, E. et al. Frequent flight responses, but low escape distance of wild boar to nonlethal human disturbance. Ecol. Solut. Evid.5, e12331 (2024).10.1002/2688-8319.12331 DOI
Lytle, D. A. & Poff, N. L. Adaptation to natural flow regimes. Trends Ecol. Evol.19, 94–100 (2004). 10.1016/j.tree.2003.10.002 PubMed DOI
Sergio, F., Blas, J. & Hiraldo, F. Animal responses to natural disturbance and climate extremes: A review. Glob. Planet. Change161, 28–40 (2018).10.1016/j.gloplacha.2017.10.009 DOI
Brainerd, S. M. & Rolstad, J. Habitat selection by Eurasian pine martens Martes martes in managed forests of southern boreal Scandinavia. Wildl. Biol.8, 289–297 (2002).10.2981/wlb.2002.026 DOI
Cloven-Hoofed Animals Spatial Activity Evaluation Methods in Doupov Mountains in the Czech Republic. (2012). 10.22004/ag.econ.146256.
Matějů, J. The Doupovske hory/Doupov Hills (On Nature in the Czech Republic, 2010); https://www.casopis.ochranaprirody.cz/en/on-nature-in-the-czech-republic/the-doupovske-hory-doupov-hills/.
Ježek, M., Holá, M., Tomáš, K. & Jaroslav, Č. Creeping into a wild boar stomach to find traces of supplementary feeding. Wildl. Res.43, 590–598 (2016).10.1071/WR16065 DOI
Olejarz, A. et al. Worse sleep and increased energy expenditure yet no movement changes in sub-urban wild boar experiencing an influx of human visitors (anthropulse) during the COVID-19 pandemic. Sci. Total Environ.879, 163106 (2023). 10.1016/j.scitotenv.2023.163106 PubMed DOI PMC
South, A. rworldmap : A new R package for mapping global data. R J.3, 35–43 (2011).10.32614/RJ-2011-006 DOI
Vectronic Aerospace. GPS Plus X. Vectronic Aerospacehttps://www.vectronic-aerospace.com/gps-plus-x/ (2021).
QGIS. QGIS Geographic Information System (Open Source Geospatial Foundation, 2020) https://qgis.org/.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2022) https://www.R-project.org/.
du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol.18, e3000411 (2020). 10.1371/journal.pbio.3000411 PubMed DOI PMC
Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol.9, 880–890 (2019). 10.1002/ece3.4823 PubMed DOI PMC
Brooks, M. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J.9, 378–400 (2017).10.32614/RJ-2017-066 DOI
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. Performance: An R package for assessment, comparison and testing of statistical models. J. Open Sour. Softw.6, 3139 (2021).10.21105/joss.03139 DOI
Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/Mixed) Regression Models. R Packag version 020 (2018).
Lüdecke, D. et al. SjPlot: Data Visualization for Statistics in Social Science. (2023).
Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Maechler, M. et al. Cluster: ‘Finding Groups in Data’: Cluster Analysis Extended Rousseeuw et Al. (2023).
Kaufman, L. & Rousseeuw, P. Finding Groups in Data: An Introduction To Cluster Analysis (Wiley, 1990). 10.2307/2532178.
Kassambara, A. & Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. (2020).