Tailoring of Multisource Deposition Conditions towards Required Chemical Composition of Thin Films
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
22-07635S
Czech Science Foundation
LM2018103
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
35683686
PubMed Central
PMC9182166
DOI
10.3390/nano12111830
PII: nano12111830
Knihovny.cz E-resources
- Keywords
- Ga–Sb–Te, calculation, co-sputtering, deposition, model, sputtering, thin film,
- Publication type
- Journal Article MeSH
The model to tailor the required chemical composition of thin films fabricated via multisource deposition, exploiting basic physicochemical constants of source materials, is developed. The model is experimentally verified for the two-source depositions of chalcogenide thin films from Ga-Sb-Te system (tie-lines GaSb-GaTe and GaSb-Te). The thin films are deposited by radiofrequency magnetron sputtering using GaSb, GaTe, and Te targets. Prepared thin films are characterized by means of energy dispersive X-ray analysis coupled with a scanning electron microscope to determine the chemical composition and by variable angle spectroscopic ellipsometry to establish film thickness. Good agreement between results of calculations and experimentally determined compositions of the co-deposited thin films is achieved for both the above-mentioned tie-lines. Moreover, in spite of all the applied simplifications, the proposed model is robust to be generally used for studies where the influence of thin film composition on their properties is investigated.
See more in PubMed
Fahlman B.D. Materials Chemistry. Springer; New York, NY, USA: 2011.
Naumann R.J. Introduction to Physics and Chemistry of Materials. CRC Press; Boca Raton, FL, USA: 2008.
Allcock H.R. Introduction to Materials Chemistry. Wiley; Hoboken, NJ, USA: 2008.
Tomelleri M., Hippert F., Farjot T., Licitra C., Vaxelaire N., Dory J.-B., Benoit D., Giordano V., Noé P. Overcoming the Thermal Stability Limit of Chalcogenide Phase-Change Materials for High-Temperature Applications in GeSe1−xTex Thin Films. Phys. Status Solidi RRL. 2021;15:2000451. doi: 10.1002/pssr.202000451. DOI
Park J.-H., Seok H.-J., Kim C.-H., Jung S.H., Cho H.K., Kim H.-K. Compositional Engineering of Hf-Doped InZnSnO Films for High-Performance and Stability Amorphous Oxide Semiconductor Thin Film Transistors. Adv. Electron. Mater. 2021;7:2001216. doi: 10.1002/aelm.202001216. DOI
Varshneya A.K., Mauro J.C. Fundamentals of Inorganic Glasses. Elsevier; Amsterdam, The Netherlands: 2019.
Bagley B.G. In: Amorphous and Liquid Semiconductors. Tauc J., editor. Plenum Publishing Company Ltd.; London, UK: 1974. Chapter 1.
Borisova Z.U. Glassy Semiconductors. Plenum Press; New York, NY, USA: 1981.
Ticha H., Tichy L. On the estimation of the refractive index of heavy metal oxide glasses. Mater. Chem. Phys. 2022;278:125638. doi: 10.1016/j.matchemphys.2021.125638. DOI
Olivier M., Němec P., Boudebs G., Boidin R., Focsa C., Nazabal V. Photosensitivity of pulsed laser deposited Ge-Sb-Se thin films. Opt. Mater. Express. 2015;5:781–793. doi: 10.1364/OME.5.000781. DOI
Hawlova P., Verger F., Nazabal V., Boidin R., Nemec P. Photostability of pulsed laser deposited amorphous thin films from Ge-As-Te system. Sci. Rep. 2015;5:9310. doi: 10.1038/srep09310. PubMed DOI PMC
Mattox D.M. Handbook of Physical Vapor Deposition (PVD) Processing. Elsevier; Amsterdam, The Netherlands: 2010.
Guerin S., Hayden B., Hewak D.W., Vian C. Synthesis and Screening of Phase Change Chalcogenide Thin Film Materials for Data Storage. ACS Comb. Sci. 2017;19:478–491. doi: 10.1021/acscombsci.7b00047. PubMed DOI
Guerin S., Hayden B.E. Physical Vapor Deposition Method for the High-Throughput Synthesis of Solid-State Material Libraries. J. Comb. Chem. 2006;8:66–71. doi: 10.1021/cc050117p. PubMed DOI
Chain-Ming L., Yeong-Iuan L., Tsung-Shune C. Crystallization kinetics of amorphous Ga–Sb–Te chalcogenide films: Part I. Nonisothermal studies by differential scanning calorimetry. J. Mater. Res. 2004;19:2929–2937.
Huai-Yu C., Kin-Fu K., Chain-Ming L., Tsung-Shune C. Crystallization kinetics of Ga–Sb–Te films for phase change memory. Thin Solid Films. 2008;516:5513–5517.
Eising G., Niebuur B.-J., Pauza A., Kooi B.J. Competing crystal growth in Ge-Sb phase-change films. Adv. Funct. Mater. 2014;24:1687–1694. doi: 10.1002/adfm.201301242. DOI
Baudet E., Sergent M., Němec P., Cardinaud C., Rinnert E., Michel K., Jouany L., Bureau B., Nazabal V. Experimental design approach for deposition optimization of RF sputtered chalcogenide thin films devoted to environmental optical sensors. Sci. Rep. 2017;7:3500. doi: 10.1038/s41598-017-03678-w. PubMed DOI PMC
Bouska M., Nazabal V., Gutwirth J., Halenkovic T., Prikryl J., Normani S., Nemec P. GaTe–Sb2Te3 thin-films phase change characteristics. Opt. Lett. 2020;45:1067–1070. doi: 10.1364/OL.386779. PubMed DOI
Bruggeman D.A.G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 1935;24:636–664. doi: 10.1002/andp.19354160705. DOI
Cody G.D. In: Semiconductors and Semimetals Volume 21 Hydrogenated Amorphous Silicon, Part B, Optical Properties. Pankove J.I., editor. Academic Press Inc.; Orlando, FL, USA: 1984. Chapter 2.
Johs E.B., Herzinger C.M., Dinan J.H., Cornfeld A., Benson J.D. Development of a parametric optical constant model for Hg1−xCdxTe for control of composition by spectroscopic ellipsometry during MBE growth. Thin Solid Films. 1998;313:137–142. doi: 10.1016/S0040-6090(97)00800-6. DOI
Wasa K., Kanno I., Kotera H. Handbook of Sputter Deposition Technology Fundamentals and Applications for Functional Thin Films, Nanomaterials, and MEMS. Elsevier; Amsterdam, The Netherlands: 2012.
Nyaiesh A.R., Holland L. The dependence of deposition rate on power input for dc and rf magnetron sputtering. Vacuum. 1981;31:315–317. doi: 10.1016/S0042-207X(81)80503-9. DOI
Maniv S. A comparison of deposition rates and temperature measurements for dc and rf diode sputtering. J. Appl. Phys. 1991;69:8411–8413. doi: 10.1063/1.347408. DOI
Misra P., Ganeshan V., Agrawal N. Low temperature deposition of highly transparent and conducting Al-doped ZnO films by RF magnetron sputtering. J. Alloys Compd. 2017;725:60–68. doi: 10.1016/j.jallcom.2017.07.121. DOI
Martil I., González-Díaz G., Sanchez-Quesada F., Rodriguez-Vidal M. Deposition Dependence of R.F.-Sputtered CdS Films. Thin Solid Films. 1982;90:253–257. doi: 10.1016/0040-6090(82)90374-1. DOI
Bellakhder H., Outzourhit A., Ameziane E.L. Study of ZnTe thin films deposited by r.f. sputtering. Thin Solid Films. 2001;382:30–33. doi: 10.1016/S0040-6090(00)01697-7. DOI
Dimova-Malinovska D., Tzenov N., Tzolov M., Vassilev L. Optical and electrical properties of r.f. magnetron sputtered ZnO:Al thin films. Mater. Sci. Eng. B. 1998;52:59–62. doi: 10.1016/S0921-5107(97)00210-9. DOI
Xuhu Y., Jin M., Feng J., Yuheng W., Xijian Z., Chuanfu C., Honglei M. Effects of sputtering power on the properties of ZnO:Ga films deposited by r.f. magnetron-sputtering at low temperature. J. Cryst. Growth. 2005;274:474–479.
Tanaka K., Shimakawa K. Amorphous Chalcogenide Semiconductors and Related Materials. Springer; New York, NY, USA: 2011.
Queiroz C.A., Šesták J. Aspects of the non-crystalline state. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B. 2010;51:165–172.
Sapelkin A.V., Bayliss S.C., Lyapin A.G., Brazhkin V.V., Dent A.J. Structure of bulk amorphous GaSb: A temperature-dependent EXAFS study. Phys. Rev. B. 1997;56:11531. doi: 10.1103/PhysRevB.56.11531. DOI
Callister W.D., Jr., Redhwisch G.D. Fundamentals of Materials Science and Engineering—An Integrate Approach. 5th ed. Wiley; New York, NY, USA: 2015.
Madelung O. Semiconductors: Data Handbook. 3rd ed. Springer; New York, NY, USA: 2004.
Ferrari A.C., Libassi A., Tanner B.K., Stolojan V., Yuan J., Brown L.M., Rodil S.E., Kleinsorge B., Robertson J. Density, sp3 fraction, and cross-sectional structure of amorphous carbon films determined by X-ray reflectivity and electron energy-loss spectroscopy. Phys. Rev. B. 2000;62:11089. doi: 10.1103/PhysRevB.62.11089. DOI
Harris D.C., Lucy C.A. Quantitative Chemical Analysis. 10th ed. MacMillan Learning; New York, NY, USA: 2020.
Powell R.A., Rossnagel S.M. PVD for Microelectronics-Sputter Deposition Applied to Semiconductor Manufacturing. Vol. 26 Elsevier; Amsterdam, The Netherlands: 1999.