• This record comes from PubMed

Tailoring of Multisource Deposition Conditions towards Required Chemical Composition of Thin Films

. 2022 May 27 ; 12 (11) : . [epub] 20220527

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
22-07635S Czech Science Foundation
LM2018103 Ministry of Education, Youth and Sports of the Czech Republic

The model to tailor the required chemical composition of thin films fabricated via multisource deposition, exploiting basic physicochemical constants of source materials, is developed. The model is experimentally verified for the two-source depositions of chalcogenide thin films from Ga-Sb-Te system (tie-lines GaSb-GaTe and GaSb-Te). The thin films are deposited by radiofrequency magnetron sputtering using GaSb, GaTe, and Te targets. Prepared thin films are characterized by means of energy dispersive X-ray analysis coupled with a scanning electron microscope to determine the chemical composition and by variable angle spectroscopic ellipsometry to establish film thickness. Good agreement between results of calculations and experimentally determined compositions of the co-deposited thin films is achieved for both the above-mentioned tie-lines. Moreover, in spite of all the applied simplifications, the proposed model is robust to be generally used for studies where the influence of thin film composition on their properties is investigated.

See more in PubMed

Fahlman B.D. Materials Chemistry. Springer; New York, NY, USA: 2011.

Naumann R.J. Introduction to Physics and Chemistry of Materials. CRC Press; Boca Raton, FL, USA: 2008.

Allcock H.R. Introduction to Materials Chemistry. Wiley; Hoboken, NJ, USA: 2008.

Tomelleri M., Hippert F., Farjot T., Licitra C., Vaxelaire N., Dory J.-B., Benoit D., Giordano V., Noé P. Overcoming the Thermal Stability Limit of Chalcogenide Phase-Change Materials for High-Temperature Applications in GeSe1−xTex Thin Films. Phys. Status Solidi RRL. 2021;15:2000451. doi: 10.1002/pssr.202000451. DOI

Park J.-H., Seok H.-J., Kim C.-H., Jung S.H., Cho H.K., Kim H.-K. Compositional Engineering of Hf-Doped InZnSnO Films for High-Performance and Stability Amorphous Oxide Semiconductor Thin Film Transistors. Adv. Electron. Mater. 2021;7:2001216. doi: 10.1002/aelm.202001216. DOI

Varshneya A.K., Mauro J.C. Fundamentals of Inorganic Glasses. Elsevier; Amsterdam, The Netherlands: 2019.

Bagley B.G. In: Amorphous and Liquid Semiconductors. Tauc J., editor. Plenum Publishing Company Ltd.; London, UK: 1974. Chapter 1.

Borisova Z.U. Glassy Semiconductors. Plenum Press; New York, NY, USA: 1981.

Ticha H., Tichy L. On the estimation of the refractive index of heavy metal oxide glasses. Mater. Chem. Phys. 2022;278:125638. doi: 10.1016/j.matchemphys.2021.125638. DOI

Olivier M., Němec P., Boudebs G., Boidin R., Focsa C., Nazabal V. Photosensitivity of pulsed laser deposited Ge-Sb-Se thin films. Opt. Mater. Express. 2015;5:781–793. doi: 10.1364/OME.5.000781. DOI

Hawlova P., Verger F., Nazabal V., Boidin R., Nemec P. Photostability of pulsed laser deposited amorphous thin films from Ge-As-Te system. Sci. Rep. 2015;5:9310. doi: 10.1038/srep09310. PubMed DOI PMC

Mattox D.M. Handbook of Physical Vapor Deposition (PVD) Processing. Elsevier; Amsterdam, The Netherlands: 2010.

Guerin S., Hayden B., Hewak D.W., Vian C. Synthesis and Screening of Phase Change Chalcogenide Thin Film Materials for Data Storage. ACS Comb. Sci. 2017;19:478–491. doi: 10.1021/acscombsci.7b00047. PubMed DOI

Guerin S., Hayden B.E. Physical Vapor Deposition Method for the High-Throughput Synthesis of Solid-State Material Libraries. J. Comb. Chem. 2006;8:66–71. doi: 10.1021/cc050117p. PubMed DOI

Chain-Ming L., Yeong-Iuan L., Tsung-Shune C. Crystallization kinetics of amorphous Ga–Sb–Te chalcogenide films: Part I. Nonisothermal studies by differential scanning calorimetry. J. Mater. Res. 2004;19:2929–2937.

Huai-Yu C., Kin-Fu K., Chain-Ming L., Tsung-Shune C. Crystallization kinetics of Ga–Sb–Te films for phase change memory. Thin Solid Films. 2008;516:5513–5517.

Eising G., Niebuur B.-J., Pauza A., Kooi B.J. Competing crystal growth in Ge-Sb phase-change films. Adv. Funct. Mater. 2014;24:1687–1694. doi: 10.1002/adfm.201301242. DOI

Baudet E., Sergent M., Němec P., Cardinaud C., Rinnert E., Michel K., Jouany L., Bureau B., Nazabal V. Experimental design approach for deposition optimization of RF sputtered chalcogenide thin films devoted to environmental optical sensors. Sci. Rep. 2017;7:3500. doi: 10.1038/s41598-017-03678-w. PubMed DOI PMC

Bouska M., Nazabal V., Gutwirth J., Halenkovic T., Prikryl J., Normani S., Nemec P. GaTe–Sb2Te3 thin-films phase change characteristics. Opt. Lett. 2020;45:1067–1070. doi: 10.1364/OL.386779. PubMed DOI

Bruggeman D.A.G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 1935;24:636–664. doi: 10.1002/andp.19354160705. DOI

Cody G.D. In: Semiconductors and Semimetals Volume 21 Hydrogenated Amorphous Silicon, Part B, Optical Properties. Pankove J.I., editor. Academic Press Inc.; Orlando, FL, USA: 1984. Chapter 2.

Johs E.B., Herzinger C.M., Dinan J.H., Cornfeld A., Benson J.D. Development of a parametric optical constant model for Hg1−xCdxTe for control of composition by spectroscopic ellipsometry during MBE growth. Thin Solid Films. 1998;313:137–142. doi: 10.1016/S0040-6090(97)00800-6. DOI

Wasa K., Kanno I., Kotera H. Handbook of Sputter Deposition Technology Fundamentals and Applications for Functional Thin Films, Nanomaterials, and MEMS. Elsevier; Amsterdam, The Netherlands: 2012.

Nyaiesh A.R., Holland L. The dependence of deposition rate on power input for dc and rf magnetron sputtering. Vacuum. 1981;31:315–317. doi: 10.1016/S0042-207X(81)80503-9. DOI

Maniv S. A comparison of deposition rates and temperature measurements for dc and rf diode sputtering. J. Appl. Phys. 1991;69:8411–8413. doi: 10.1063/1.347408. DOI

Misra P., Ganeshan V., Agrawal N. Low temperature deposition of highly transparent and conducting Al-doped ZnO films by RF magnetron sputtering. J. Alloys Compd. 2017;725:60–68. doi: 10.1016/j.jallcom.2017.07.121. DOI

Martil I., González-Díaz G., Sanchez-Quesada F., Rodriguez-Vidal M. Deposition Dependence of R.F.-Sputtered CdS Films. Thin Solid Films. 1982;90:253–257. doi: 10.1016/0040-6090(82)90374-1. DOI

Bellakhder H., Outzourhit A., Ameziane E.L. Study of ZnTe thin films deposited by r.f. sputtering. Thin Solid Films. 2001;382:30–33. doi: 10.1016/S0040-6090(00)01697-7. DOI

Dimova-Malinovska D., Tzenov N., Tzolov M., Vassilev L. Optical and electrical properties of r.f. magnetron sputtered ZnO:Al thin films. Mater. Sci. Eng. B. 1998;52:59–62. doi: 10.1016/S0921-5107(97)00210-9. DOI

Xuhu Y., Jin M., Feng J., Yuheng W., Xijian Z., Chuanfu C., Honglei M. Effects of sputtering power on the properties of ZnO:Ga films deposited by r.f. magnetron-sputtering at low temperature. J. Cryst. Growth. 2005;274:474–479.

Tanaka K., Shimakawa K. Amorphous Chalcogenide Semiconductors and Related Materials. Springer; New York, NY, USA: 2011.

Queiroz C.A., Šesták J. Aspects of the non-crystalline state. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B. 2010;51:165–172.

Sapelkin A.V., Bayliss S.C., Lyapin A.G., Brazhkin V.V., Dent A.J. Structure of bulk amorphous GaSb: A temperature-dependent EXAFS study. Phys. Rev. B. 1997;56:11531. doi: 10.1103/PhysRevB.56.11531. DOI

Callister W.D., Jr., Redhwisch G.D. Fundamentals of Materials Science and Engineering—An Integrate Approach. 5th ed. Wiley; New York, NY, USA: 2015.

Madelung O. Semiconductors: Data Handbook. 3rd ed. Springer; New York, NY, USA: 2004.

Ferrari A.C., Libassi A., Tanner B.K., Stolojan V., Yuan J., Brown L.M., Rodil S.E., Kleinsorge B., Robertson J. Density, sp3 fraction, and cross-sectional structure of amorphous carbon films determined by X-ray reflectivity and electron energy-loss spectroscopy. Phys. Rev. B. 2000;62:11089. doi: 10.1103/PhysRevB.62.11089. DOI

Harris D.C., Lucy C.A. Quantitative Chemical Analysis. 10th ed. MacMillan Learning; New York, NY, USA: 2020.

Powell R.A., Rossnagel S.M. PVD for Microelectronics-Sputter Deposition Applied to Semiconductor Manufacturing. Vol. 26 Elsevier; Amsterdam, The Netherlands: 1999.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...