Toward Chalcogenide Platform Infrared Sensor Dedicated to the In Situ Detection of Aromatic Hydrocarbons in Natural Waters via an Attenuated Total Reflection Spectroscopy Study
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
ANR-11-ECOT-0010
Agence Nationale de la Recherche
ANR-15-CE04-0001-01
Agence Nationale de la Recherche
PhD funds
Britanny region
PhD funds
BRGM-IFREMER interCarnot
PubMed
33918118
PubMed Central
PMC8036779
DOI
10.3390/s21072449
PII: s21072449
Knihovny.cz E-resources
- Keywords
- BTEXs, PAHs, chalcogenide glasses, mid-infrared, mono-aromatic hydrocarbons, natural waters, optical infrared sensor,
- Publication type
- Journal Article MeSH
The objective of this study is to demonstrate the successful functionalization of the surface of a chalcogenide infrared waveguide with the ultimate goal of developing an infrared micro-sensor device. First, a polyisobutylene coating was selected by testing its physico-chemical compatibility with a Ge-Sb-Se selenide surface. To simulate the chalcogenide platform infrared sensor, the detection of benzene, toluene, and ortho-, meta- and para-xylenes was efficaciously performed using a polyisobutylene layer spin-coated on 1 and 2.5 µm co-sputtered selenide films of Ge28Sb12Se60 composition deposited on a zinc selenide prism used for attenuated total reflection spectroscopy. The thickness of the polymer coating was optimized by attenuated total reflection spectroscopy to achieve the highest possible attenuation of water absorption while maintaining the diffusion rate of the pollutant through the polymer film compatible with the targeted in situ analysis. Then, natural water, i.e., groundwater, wastewater, and seawater, was sampled for detection measurement by means of attenuated total reflection spectroscopy. This study is a valuable contribution concerning the functionalization by a hydrophobic polymer compatible with a chalcogenide optical sensor designed to operate in the mid-infrared spectral range to detect in situ organic molecules in natural water.
FOTON UMR CNRS 6082 ENSSAT BP80518 22305 Lannion France
IFREMER Centre Bretagne Laboratoire Détection Capteurs et Mesures CS10070 29280 Plouzané France
See more in PubMed
Conmy R.N., Coble P.G., Farr J., Wood A.M., Lee K., Pegau W.S., Walsh I.D., Koch C.R., Abercrombie M.I., Miles M.S., et al. Submersible Optical Sensors Exposed to Chemically Dispersed Crude Oil: Wave Tank Simulations for Improved Oil Spill Monitoring. Environ. Sci. Technol. 2014;48:1803–1810. doi: 10.1021/es404206y. PubMed DOI
Sieger M., Haas J., Jetter M., Michler P., Godejohann M., Mizaikoff B. Mid-Infrared Spectroscopy Platform Based on GaAs/AIGaAs Thin-Film Waveguides and Quantum Cascade Lasers. Anal. Chem. 2016;88:2558–2562. doi: 10.1021/acs.analchem.5b04144. PubMed DOI
Pejcic B., Eadington P., Ross A. Environmental monitoring of hydrocarbons: A chemical sensor perspective. Environ. Sci. Technol. 2007;41:6333–6342. doi: 10.1021/es0704535. PubMed DOI
Kim S.S., Young C., Mizaikoff B. Miniaturized mid-infrared sensor technologies. Anal. Bioanal. Chem. 2008;390:231–237. doi: 10.1007/s00216-007-1673-5. PubMed DOI
Mittal V., Mashanovich G.Z., Wilkinson J.S. Perspective on Thin Film Waveguides for on-Chip Mid-Infrared Spectroscopy of Liquid Biochemical Analytes. Anal. Chem. 2020;92:10891–10901. doi: 10.1021/acs.analchem.0c01296. PubMed DOI
Cervera M.I., Beltran J., Lopez F.J., Hernandez F. Determination of volatile organic compounds in water by headspace solid-phase microextraction gas chromatography coupled to tandem mass spectrometry with triple quadrupole analyzer. Anal. Chim. Acta. 2011;704:87–97. doi: 10.1016/j.aca.2011.08.012. PubMed DOI
Pascale R., Bianco G., Calace S., Masi S., Mancini I.M., Mazzone G., Caniani D. Method development and optimization for the determination of benzene, toluene, ethylbenzene and xylenes in water at trace levels by static headspace extraction coupled to gas chromatography-barrier ionization discharge detection. J. Chromatogr. A. 2018;1548:10–18. doi: 10.1016/j.chroma.2018.03.018. PubMed DOI
Kratz C., Furchner A., Sun G.G., Rappich J., Hinrichs K. Sensing and structure analysis byin situIR spectroscopy: From mL flow cells to microfluidic applications. J. Phys. Condens. Matter. 2020;32:1–16. doi: 10.1088/1361-648X/ab8523. PubMed DOI
Pejcic B., Boyd L., Myers M., Ross A., Raichlin Y., Katzir A., Lu R., Mizaikoff B. Direct quantification of aromatic hydrocarbons in geochemical fluids with a mid-infrared attenuated total reflection sensor. Org. Geochem. 2013;55:63–71. doi: 10.1016/j.orggeochem.2012.11.011. DOI
Flavin K., Hughes H., Dobbyn V., Kirwan P., Murphy K., Steiner H., Mizaikoff B., McLoughlin P. A comparison of polymeric materials as pre-concentrating media for use with ATR/FTIR sensing. Int. J. Environ. Anal. Chem. 2006;86:401–415. doi: 10.1080/03067310500291585. DOI
Schadle T., Pejcic B., Myers M., Mizaikoff B. Fingerprinting Oils in Water via Their Dissolved VOC Pattern Using Mid-Infrared Sensors. Anal. Chem. 2014;86:9512–9517. doi: 10.1021/ac5015029. PubMed DOI
Luzinova Y., Zdyrko B., Luzinov I., Mizaikoff B. Detecting trace amounts of water in hydrocarbon matrices with infrared fiberoptic evanescent field sensors. Analyst. 2012;137:333–341. doi: 10.1039/C1AN15521K. PubMed DOI
Lu R., Mizaikoff B., Li W.W., Qian C., Katzir A., Raichlin Y., Sheng G.P., Yu H.Q. Determination of Chlorinated Hydrocarbons in Water Using Highly Sensitive Mid-Infrared Sensor Technology. Sci. Rep. 2013;3:1–6. doi: 10.1038/srep02525. PubMed DOI PMC
Stach R., Pejcic B., Crooke E., Myers M., Mizaikoff B. Mid-Infrared Spectroscopic Method for the Identification and Quantification of Dissolved Oil Components in Marine Environments. Anal. Chem. 2015;87:12306–12312. doi: 10.1021/acs.analchem.5b03624. PubMed DOI
Hansel A., Heck M.J.R. Opportunities for photonic integrated circuits in optical gas sensors. J. Phys. Photonics. 2020;2:012002. doi: 10.1088/2515-7647/ab6742. DOI
Gutierrez-Arroyo A., Baudet E., Bodiou L., Nazabal V., Rinnert E., Michel K., Bureau B., Colas F., Charrier J. Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the Mid-Infrared. Sens. Actuators B Chem. 2017;242:842–848. doi: 10.1016/j.snb.2016.09.174. DOI
Coutard J.G., Brun M., Fournier M., Lartigue O., Fedeli F., Maisons G., Fedeli J.M., Nicoletti S., Carras M., Duraffourg L. Volume Fabrication of Quantum Cascade Lasers on 200 mm-CMOS pilot line. Sci. Rep. 2020;10:1–8. PubMed PMC
Sieger M., Mizaikoff B. Toward On-Chip Mid-Infrared Sensors. Anal. Chem. 2016;88:5562–5573. doi: 10.1021/acs.analchem.5b04143. PubMed DOI
Su P., Han Z., Kita D., Becla P., Lin H., Deckoff-Jones S., Richardson K., Kimerling L.C., Hu J., Agarwal A. Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector. Appl. Phys. Lett. 2019;114:051103. doi: 10.1063/1.5053599. DOI
Tsay C., Toor F., Gmachl C.F., Arnold C.B. Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits. Opt. Lett. 2010;35:3324–3326. doi: 10.1364/OL.35.003324. PubMed DOI
Bodiou L., Dumeige Y., Normani S., Louvet G., Nemec P., Nazabal V., Charrier J. Design of a multimode interferometer-based mid-infrared multispecies gas sensor. IEEE Sens. J. 2020;20:13426–13435. doi: 10.1109/JSEN.2020.3005346. DOI
Kuriakose T., Renversez G., Nazabal V., Elsawy M.M.R., Coulon N., Němec P., Chauvet M. Nonlinear Self-Confined Plasmonic Beams: Experimenta. ACS Photonics. 2020;7:2562–2570. doi: 10.1021/acsphotonics.0c00906. DOI
Louvet G., Normani S., Bodiou L., Gutwirth J., Lemaitre J., Pirasteh P., Doualan J.L., Benardais A., Ledemi Y., Messaddeq Y., et al. Co-sputtered Pr3+-doped Ga-Ge-Sb-Se active waveguides for mid-infrared operation. Opt. Express. 2020;28:22511–22523. doi: 10.1364/OE.398434. PubMed DOI
Li L., Lin H.T., Michon J., Huang Y.Z., Li J.Y., Du Q.Y., Yadav A., Richardson K., Gu T., Hu J.J. A new twist on glass: A brittle material enabling flexible integrated photonics. Int. J. Appl. Glass Sci. 2017;8:61–68. doi: 10.1111/ijag.12256. DOI
Han Z., Singh V., Kita D., Monmeyran C., Becla P., Su P., Li J., Huang X., Kimerling L.C., Hu J., et al. On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors. Appl. Phys. Lett. 2016;109:071111. doi: 10.1063/1.4961532. DOI
Bodiou L., Starecki F., Lemaitre J., Nazabal V., Doualan J.L., Baudet E., Chahal R., Gutierrez-Arroyo A., Dumeige Y., Hardy I., et al. Mid-infrared guided photoluminescence from integrated Pr3+-doped selenide ridge waveguides. Opt. Mater. 2018;75:109–115. doi: 10.1016/j.optmat.2017.10.001. DOI
Goldsmith H.D.K., Ireland M., Ma P., Cvetojevic N., Madden S. Improving the extinction bandwidth of MMI chalcogenide photonic chip based MIR nulling interferometers. Opt. Express. 2017;25:16813–16824. doi: 10.1364/OE.25.016813. PubMed DOI
Ma P., Choi D.Y., Yu Y., Yang Z.Y., Vu K., Nguyen T., Mitchell A., Luther-Davies B., Madden S. High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing. Opt. Express. 2015;23:19969–19979. doi: 10.1364/OE.23.019969. PubMed DOI
Yu Y., Gai X., Ma P., Choi D.Y., Yang Z.Y., Wang R.P., Debbarma S., Madden S.J., Luther-Davies B. A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide. Laser Photonics Rev. 2014;8:792–798. doi: 10.1002/lpor.201400034. DOI
Baudet E., Gutierrez-Arroyo A., Baillieul M., Charrier J., Němec P., Bodiou L., Lemaitre J., Rinnert E., Michel K., Bureau B., et al. Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater. Adv. Device Mater. 2017;3:23–29. doi: 10.1080/20550308.2017.1338211. DOI
Baudet E., Gutierrez-Arroyo A., Nemec P., Bodiou L., Lemaitre J., De Sagazan O., Lhermitte H., Rinnert E., Michel K., Bureau B., et al. Selenide sputtered films development for MIR environmental sensor. Opt. Mater. Express. 2016;6:2616–2627. doi: 10.1364/OME.6.002616. DOI
Baudet E., Sergent M., Nemec P., Cardinaud C., Rinnert E., Michel K., Jouany L., Bureau B., Nazabal V. Experimental design approach for deposition optimization of RF sputtered chalcogenide thin films devoted to environmental optical sensors. Sci. Rep. 2017;7:3500. doi: 10.1038/s41598-017-03678-w. PubMed DOI PMC
Gutierrez-Arroyo A., Baudet E., Bodiou L., Lemaitre J., Hardy I., Faijan F., Bureau B., Nazabal V., Charrier J. Optical characterization at 7.7 mu m of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared. Opt. Express. 2016;24:23109–23117. PubMed
Pejcic B., Myers M., Ross A. Mid-Infrared Sensing of Organic Pollutants in Aqueous Environments. Sensors. 2009;9:6232–6253. doi: 10.3390/s90806232. PubMed DOI PMC
Lin W.D., Li Z.J. Detection and Quantification of Trace Organic Contaminants in Water Using the FT-IR-Attenuated Total Reflectance Technique. Anal. Chem. 2010;82:505–515. PubMed
Karlowatz M., Kraft M., Mizalkoff B. Simultaneous Quantitative Determination of Benzene, Toluene, and Xylenes in Water Using Mid-Infrared Evanescent Field Spectroscopy. Anal. Chem. 2004;76:2643–2648. doi: 10.1021/ac0347009. PubMed DOI
Spin-Coating on Nanoscale Topography and Phase Separation of Diblock Copolymers. [(accessed on 29 March 2021)]; Available online: http://miis.maths.ox.ac.uk/miis/203/
Vigano C., Ruyssehaert J.M., Goormaghtigh E. Sensor applications of attenuated total reflection infrared spectroscopy. Talanta. 2005;65:1132–1142. doi: 10.1016/j.talanta.2004.07.052. PubMed DOI
Gobel R., Seitz R.W., Tomellini S.A., Krska R., Kellner R. Infrared Attenuated Total-Reflection Spectroscopic Investigations of the Diffusion Behavior of Chlorinated Hydrocarbons into Polymer Membranes. Vib. Spectrosc. 1995;8:141–149. doi: 10.1016/0924-2031(94)00045-I. DOI
Coates J. Interpretation of Infrared Spectra, A Practical Approach. In: Meyers R.A., editor. Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2000. pp. 10815–10837.
Eilers P.H.C. A perfect smoother. Anal. Chem. 2003;75:3631–3636. doi: 10.1021/ac034173t. PubMed DOI
Windig W. Spectral data files for self-modeling curve resolution with examples using the Simplisma approach. Chemom. Intell. Lab. Syst. 1997;36:3–16. doi: 10.1016/S0169-7439(96)00061-5. DOI
Moreau J., Rinnert E. Fast identification and quantification of BTEX coupling by Raman spectrometry and chemometrics. Analyst. 2015;140:3535–3542. doi: 10.1039/C5AN00035A. PubMed DOI
Ghani M., Ghoreishi S.M., Masoum S. Highly porous nanostructured copper oxide foam fiber as a sorbent for head space solid-phase microextraction of BTEX from aqueous solutions. Microchem. J. 2019;145:210–217. doi: 10.1016/j.microc.2018.10.036. DOI
Fernandes A.N., Gouveia C.D., Grassi M.T., Crespo J.D., Giovanela M. Determination of Monoaromatic Hydrocarbons (BTEX) in Surface Waters from a Brazilian Subtropical Hydrographic Basin. Bull. Environ. Contam. Toxicol. 2014;92:455–459. doi: 10.1007/s00128-014-1221-x. PubMed DOI
Dettenrieder C., Raichlin Y., Katzir A., Mizaikoff B. Toward the Required Detection Limits for Volatile Organic Constituents in Marine Environments with Infrared Evanescent Field Chemical Sensors. Sensors. 2019;19:3644. doi: 10.3390/s19173644. PubMed DOI PMC
Jin T.N., Zhou J.C., Lin H.Y.G., Lin P.T. Mid-Infrared Chalcogenide Waveguides for Real-Time and Nondestructive Volatile Organic Compound Detection. Anal. Chem. 2019;91:817–822. doi: 10.1021/acs.analchem.8b03004. PubMed DOI