Surface Functionalization with Polymer Membrane or SEIRA Interface to Improve the Sensitivity of Chalcogenide-Based Infrared Sensors Dedicated to the Detection of Organic Molecules

. 2022 Dec 27 ; 7 (51) : 47840-47850. [epub] 20221209

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36591173

Priority substances likely to pollute water can be characterized by mid-infrared spectroscopy based on their specific absorption spectral signature. In this work, the detection of volatile aromatic molecules in the aqueous phase by evanescent-wave spectroscopy has been optimized to improve the detection efficiency of future in situ optical sensors based on chalcogenide waveguides. To this end, a hydrophobic polymer was deposited on the surface of a zinc selenide prism using drop and spin-coating methods. To ensure that the water absorption bands will be properly attenuated for the selenide waveguides, two polymers were selected and compared: polyisobutylene and ethylene/propylene copolymer coating. The system was tested with benzene, toluene, and ortho-, meta-, and para-xylenes at concentrations ranging from 10 ppb to 40 ppm, and the measured detection limit was determined to be equal to 250 ppb under these analytical conditions using ATR-FTIR. The polyisobutylene membrane is promising for pollutant detection in real waters due to the reproducibility of its deposition on selenide materials, the ease of regeneration, the short response time, and the low ppb detection limit, which could be achieved with the infrared photonic microsensor based on chalcogenide materials. To improve the sensitivity of future infrared microsensors, the use of metallic nanostructures on the surface of chalcogenide waveguides appears to be a relevant way, thanks to the plasmon resonance phenomena. Thus, in addition to preliminary surface-enhanced infrared absorption tests using these materials and a functionalization via a self-assembled monolayer of 4-nitrothiophenol, heterostructures combining gold nanoparticles/chalcogenide waveguides have been successfully fabricated with the aim of proposing a SEIRA microsensor device.

Zobrazit více v PubMed

Tornero V.; Hanke G. Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas. Mar. Pollut. Bull. 2016, 112, 17–38. 10.1016/j.marpolbul.2016.06.091. PubMed DOI

Cunha I.; Moreira S.; Santos M. M. Review on hazardous and noxious substances (HNS) involved in marine spill incidents-An online database. J. Hazard. Mater. 2015, 285, 509–516. 10.1016/j.jhazmat.2014.11.005. PubMed DOI

Rahmani M.; Kaykhaii M.; Ghasemi E.; Tahernejad M. Application of In-Syringe Dispersive Liquid-Liquid Microextraction and Narrow-Bore Tube Dispersive Liquid-Liquid Microextraction for the Determination of Trace Amounts of BTEX in Water Samples. J. Chromatogr. Sci. 2015, 53, 1210–1216. 10.1093/chromsci/bmu163. PubMed DOI

El Mohajir A.; Castro-Gutierrez J.; Canevesi R. L. S.; Bezverkhyy I.; Weber G.; Bellat J. P.; Berger F.; Celzard A.; Fierro V.; Sanchez J. B. Novel Porous Carbon Material for the Detection of Traces of Volatile Organic Compounds in Indoor Air. ACS Appl. Mater. Interfaces 2021, 13, 40088–40097. 10.1021/acsami.1c10430. PubMed DOI

Wang Z. L.; Liu K.; Chang X. M.; Qi Y. Y.; Shang C. D.; Liu T. H.; Liu J.; Ding L. P.; Fang Y. Highly Sensitive and Discriminative Detection of BTEX in the Vapor Phase: A Film-Based Fluorescent Approach. ACS Appl. Mater. Interfaces 2018, 10, 35647–35655. 10.1021/acsami.8b13747. PubMed DOI

Shen Z.; Zhang X. D.; Ma X. H.; Mi R. N.; Chen Y.; Ruan S. P. The significant improvement for BTX (benzene, toluene and xylene) sensing performance based on Au-decorated hierarchical ZnO porous rose-like architectures. Sens. Actuator B-Chem. 2018, 262, 86–94. 10.1016/j.snb.2018.01.205. DOI

Khan S.; Le Calve S.; Newport D. A review of optical interferometry techniques for VOC detection. Sens. Actuators, A 2020, 302, 11178210.1016/j.sna.2019.111782. DOI

Nightingale A. M.; Hassan S. U.; Warren B. M.; Makris K.; Evans G. W. H.; Papadopoulou E.; Coleman S.; Niu X. Z. A Droplet Microfluidic-Based Sensor for Simultaneous in Situ Monitoring of Nitrate and Nitrite in Natural Waters. Environ. Sci. Technol. 2019, 53, 9677–9685. 10.1021/acs.est.9b01032. PubMed DOI

Gavrilescu M.; Demnerova K.; Aamand J.; Agathoss S.; Fava F. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol. 2015, 32, 147–156. 10.1016/j.nbt.2014.01.001. PubMed DOI

Sieger M.; Haas J.; Jetter M.; Michler P.; Godejohann M.; Mizaikoff B. Mid-Infrared Spectroscopy Platform Based on GaAs/AIGaAs Thin-Film Waveguides and Quantum Cascade Lasers. Anal. Chem. 2016, 88, 2558–2562. 10.1021/acs.analchem.5b04144. PubMed DOI

Pejcic B.; Eadington P.; Ross A. Environmental monitoring of hydrocarbons: A chemical sensor perspective. Environ. Sci. Technol. 2007, 41, 6333–6342. 10.1021/es0704535. PubMed DOI

Kim S. S.; Young C.; Mizaikoff B. Miniaturized mid-infrared sensor technologies. Anal. Bioanal. Chem. 2008, 390, 231–237. 10.1007/s00216-007-1673-5. PubMed DOI

Kratz C.; Furchner A.; Sun G. G.; Rappich J.; Hinrichs K. Sensing and structure analysis byin situIR spectroscopy: from mL flow cells to microfluidic applications. J. Phys.: Condes. Matter 2020, 32, 39300210.1088/1361-648X/ab8523. PubMed DOI

Mittal V.; Mashanovich G. Z.; Wilkinson J. S. Perspective on Thin Film Waveguides for on-Chip Mid-Infrared Spectroscopy of Liquid Biochemical Analytes. Anal. Chem. 2020, 92, 10891–10901. 10.1021/acs.analchem.0c01296. PubMed DOI

Dettenrieder C.; Turkmen D.; Mattsson A.; Osterlund L.; Karlsson M.; Mizaikoff B. Determination of Volatile Organic Compounds in Water by Attenuated Total Reflection Infrared Spectroscopy and Diamond-Like Carbon Coated Silicon Wafers. Chemosensors 2020, 8, 75.10.3390/chemosensors8030075. DOI

Hänsel A.; Heck M. J. R. Opportunities for photonic integrated circuits in optical gas sensors. J. Phys. Photonics 2020, 2, 01200210.1088/2515-7647/ab6742. DOI

Alahi M. E. E.; Mukhopadhyay S. C. Detection methods of nitrate in water: A review. Sens. Actuators, A 2018, 280, 210–221. 10.1016/j.sna.2018.07.026. DOI

Alahi M. E. E.; Mukhopadhyay S. C.. IoT Enabled Smart Sensing System. In Smart Nitrate Sensor: Internet of Things Enabled Real-Time Water Quality Monitoring; Springer International Publishing, 2019; pp 115–130.

Mahmud M. A. P.; Ejeian F.; Azadi S.; Myers M.; Pejcic B.; Abbassi R.; Razmjou A.; Asadnia M. Recent progress in sensing nitrate, nitrite, phosphate, and ammonium in aquatic environment. Chemosphere 2020, 259, 12749210.1016/j.chemosphere.2020.127492. DOI

Heath C.; Pejcic B.; Myers M. B. Block Copolymer-Coated ATR-FTIR Spectroscopic Sensors for Monitoring Hydrocarbons in Aquatic Environments at High Temperature and Pressure. ACS Appl. Polym. Mater. 2019, 1, 2149–2156. 10.1021/acsapm.9b00420. DOI

Baillieul M.; Baudet E.; Michel K.; Moreau J.; Nemec P.; Boukerma K.; Colas F.; Charrier J.; Bureau B.; Rinnert E.; Nazabal V. Toward Chalcogenide Platform Infrared Sensor Dedicated to the In Situ Detection of Aromatic Hydrocarbons in Natural Waters via an Attenuated Total Reflection Spectroscopy Study. Sensors 2021, 21, 2449.10.3390/s21072449. PubMed DOI PMC

Gutierrez-Arroyo A.; Baudet E.; Bodiou L.; Nazabal V.; Rinnert E.; Michel K.; Bureau B.; Colas F.; Charrier J. Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the Mid-Infrared. Sens. Actuator, B 2017, 242, 842–848. 10.1016/j.snb.2016.09.174. DOI

Baudet E.; Gutierrez-Arroyo A.; Baillieul M.; Charrier J.; Němec P.; Bodiou L.; Lemaitre J.; Rinnert E.; Michel K.; Bureau B.; et al. Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater. Adv. Device Mater. 2017, 3, 23–29. 10.1080/20550308.2017.1338211. DOI

Boussard-Plédel C.12 - Chalcogenide waveguides for infrared sensing. In Chalcogenide Glasses; Adam J.-L.; Zhang X., Eds.; Woodhead Publishing, 2014; pp 381–410.

Jin T. N.; Zhou J. C.; Lin H. Y. G.; Lin P. T. Mid-Infrared Chalcogenide Waveguides for Real-Time and Nondestructive Volatile Organic Compound Detection. Anal. Chem. 2019, 91, 817–822. 10.1021/acs.analchem.8b03004. PubMed DOI

Gutierrez-Arroyo A.; Bodiou L.; Lemaitre J.; Baudet E.; Baillieul M.; Hardy I.; Caillaud C.; Colas F.; Boukerma K.; Rinnert E.. et al.Development of an integrated platform based on chalcogenides for sensing applications in the mid-infrared. In Integrated Optics: Devices, Materials, and Technologies Xxii; Proceedings of SPIE, GarciaBlanco S. M.; Cheben P., Eds.; Spie-Int Soc Optical Engineering, 2018; Vol. 10535.

Lu R.; Li W. W.; Mizaikoff B.; Katzir A.; Raichlin Y.; Sheng G. P.; Yu H. Q. High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water. Nat. Protoc. 2016, 11, 377–386. 10.1038/nprot.2016.013. PubMed DOI

Nam C.; Zimudzi T. J.; Wiencek R. A.; Chung T. C. M.; Hickner M. A. Improved ATR-FTIR detection of hydrocarbons in water with semi-crystalline polyolefin coatings on ATR elements. Analyst 2018, 143, 5589–5596. 10.1039/c8an01280f. PubMed DOI

Pejcic B.; Myers M.; Crooke E.; Ross A.; Baker M.. Improvements to ATR-FTIR based Chemical Sensors for the Detection of Organic Contaminants Dissolved in Water; IEEE, 2009; pp 299–30310.1109/icsens.2009.5398158. DOI

Flavin K.; Hughes H.; Dobbyn V.; Kirwan P.; Murphy K.; Steiner H.; Mizaikoff B.; McLoughlin P. A comparison of polymeric materials as pre-concentrating media for use with ATR/FTIR sensing. Int. J. Environ. Anal. Chem. 2006, 86, 401–415. 10.1080/03067310500291585. DOI

Lu R.; Mizaikoff B.; Li W. W.; Qian C.; Katzir A.; Raichlin Y.; Sheng G. P.; Yu H. Q. Determination of Chlorinated Hydrocarbons in Water Using Highly Sensitive Mid-Infrared Sensor Technology. Sci. Rep. 2013, 3, 252510.1038/srep02525. PubMed DOI PMC

Murphy B.; Kirwan P.; McLoughlin R. Investigation into polymer-diffusant interactions using ATR-FTIR spectroscopy. Vib. Spectrosc. 2003, 33, 75–82. 10.1016/s0924-2031(03)00091-2. DOI

Howley R.; MacCraith B. D.; O’Dwyer K.; Kirwan P.; McLoughlin P. A study of the factors affecting the diffusion of chlorinated hydrocarbons into polyisobutylene and polyethylene-co-propylene for evanescent wave sensing. Vib. Spectrosc. 2003, 31, 271–278. 10.1016/s0924-2031(03)00020-1. DOI

Neubrech F.; Pucci A.; Cornelius T. W.; Karim S.; Garcia-Etxarri A.; Aizpurua J. Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection. Phys. Rev. Lett. 2008, 101, 15740310.1103/PhysRevLett.101.157403. PubMed DOI

Pi M. Q.; Zheng C. A. T.; Ji J. L.; Zhao H.; Peng Z. H.; Lang J. M.; Liang L.; Zhang Y.; Wang Y. D.; Tittel F. K. Surface-Enhanced Infrared Absorption Spectroscopic Chalcogenide Waveguide Sensor Using a Silver Island Film. ACS Appl. Mater. Interfaces 2021, 13, 32555–32563. 10.1021/acsami.1c08177. PubMed DOI

Pucci A.; Neubrech F.; Weber D.; Hong S.; Toury T.; de la Chapelle M. L. Surface enhanced infrared spectroscopy using gold nanoantennas. Phys. Status Solidi B 2010, 247, 2071–2074. 10.1002/pssb.200983933. DOI

Verger F.; Colas F.; Sire O.; Shen H.; Rinnert E.; Boukerma K.; Nazabal V.; Boussard-Pledel C.; Bureau B.; Toury T.; et al. Surface enhanced infrared absorption by nanoantenna on chalcogenide glass substrates. Appl. Phys. Lett. 2015, 106, 07310310.1063/1.4913308. DOI

Verger F.; Nazabal V.; Colas F.; Nemec P.; Cardinaud C.; Baudet E.; Chahal R.; Rinnert E.; Boukerma K.; Peron I.; et al. RF sputtered amorphous chalcogenide thin films for surface enhanced infrared absorption spectroscopy. Opt. Mater. Express 2013, 3, 2112–2131. 10.1364/ome.3.002112. DOI

Verger F.; Pain T.; Nazabal V.; Boussard-Pledel C.; Bureau B.; Colas F.; Rinnert E.; Boukerma K.; Compere C.; Guilloux-Viry M.; et al. Surface enhanced infrared absorption (SEIRA) spectroscopy using gold nanoparticles on As2S3 glass. Sens. Actuator, B 2012, 175, 142–148. 10.1016/j.snb.2012.01.038. DOI

Anne M. L.; Keirsse J.; Nazabal V.; Hyodo K.; Inoue S.; Boussard-Pledel C.; Lhermite H.; Charrier J.; Yanakata K.; Loreal O.; et al. Chalcogenide Glass Optical Waveguides for Infrared Biosensing. Sensors 2009, 9, 7398–7411. 10.3390/s90907398. PubMed DOI PMC

Baudet E.; Gutierrez-Arroyo A.; Nemec P.; Bodiou L.; Lemaitre J.; De Sagazan O.; Lhermitte H.; Rinnert E.; Michel K.; Bureau B.; et al. Selenide sputtered films development for MIR environmental sensor. Opt. Mater. Express 2016, 6, 2616–2627. 10.1364/ome.6.002616. DOI

Renversez G.; Nazabal V.; Charrier J.; Demésy G.. Full-vector finite element 3D model for waveguide-based plasmonic sensors in the infrared. In Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), Zurich, 2 July 2018; Optical Society of America, 2018; p SeW1E.6.10.1364/SENSORS.2018.SeW1E.6. DOI

Stach R.; Pejcic B.; Crooke E.; Myers M.; Mizaikoff B. Mid-Infrared Spectroscopic Method for the Identification and Quantification of Dissolved Oil Components in Marine Environments. Anal. Chem. 2015, 87, 12306–12312. 10.1021/acs.analchem.5b03624. PubMed DOI

Pejcic B.; Boyd L.; Myers M.; Ross A.; Raichlin Y.; Katzir A.; Lu R.; Mizaikoff B. Direct quantification of aromatic hydrocarbons in geochemical fluids with a mid-infrared attenuated total reflection sensor. Org. Geochem. 2013, 55, 63–71. 10.1016/j.orggeochem.2012.11.011. DOI

Gobel R.; Seitz R. W.; Tomellini S. A.; Krska R.; Kellner R. Infrared attenuated total-reflection spectroscopic investigations of the diffusion behavior of chlorinated hydrocarbons into polymer membranes. Vib. Spectrosc. 1995, 8, 141–149. 10.1016/0924-2031(94)00045-i. DOI

Mendes P. M.; Christman K. L.; Parthasarathy P.; Schopf E.; Ouyang J.; Yang Y.; Preece J. A.; Maynard H. D.; Chen Y.; Stoddart J. F. Electrochemically controllable conjugation of proteins on surfaces. Bioconjugate Chem. 2007, 18, 1919–1923. 10.1021/bc7002296. PubMed DOI

Dettenrieder C.; Raichlin Y.; Katzir A.; Mizaikoff B. Toward the Required Detection Limits for Volatile Organic Constituents in Marine Environments with Infrared Evanescent Field Chemical Sensors. Sensors 2019, 19, 364410.3390/s19173644. PubMed DOI PMC

Karlowatz M.; Kraft M.; Mizalkoff B. Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field spectroscopy. Anal. Chem. 2004, 76, 2643–2648. 10.1021/ac0347009. PubMed DOI

Bagheri S.; Giessen H.; Neubrech F. Large-Area Antenna-Assisted SEIRA Substrates by Laser Interference Lithography. Adv. Opt. Mater. 2014, 2, 1050–1056. 10.1002/adom.201400218. DOI

Lérondel G.; Kostcheev S.; Plain J.. Nanofabrication for Plasmonics. In Plasmonics: From Basics to Advanced Topics; Enoch S.; Bonod N., Eds.; Springer Berlin: Heidelberg, 2012; pp 269–316.

Demesy G.; Renversez G.. Discontinuities in photonic waveguides: rigorous Maxwell-based 3D modeling with the finite element method. In J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 2020; Vol. 37, pp 1025–103310.1364/josaa.390480. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...