Sc-doped GeTe thin films prepared by radio-frequency magnetron sputtering

. 2025 Jan 03 ; 15 (1) : 627. [epub] 20250103

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39753741

Grantová podpora
22-07635S Grantová Agentura České Republiky
22-07635S Grantová Agentura České Republiky
22-07635S Grantová Agentura České Republiky
22-07635S Grantová Agentura České Republiky
LM2023037 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023037 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 39753741
PubMed Central PMC11698982
DOI 10.1038/s41598-024-84963-3
PII: 10.1038/s41598-024-84963-3
Knihovny.cz E-zdroje

Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have Ge48Te52, Ge46Te50Sc4, Ge44Te48Sc8, Ge43Te47Sc10 and Ge41Te45Sc14 chemical composition. The crystallization temperatures were found in the region of ~ 153-272 °C and they increase with scandium content. Upon amorphous-crystalline material phase change, large changes in sheet resistance were measured, with electrical contrast in terms of sheet resistance ratio Rannealed/Ras-deposited in the range of 1.37.10-4 - 9.1.10-7. Simultaneously, huge variations of optical functions were found as demonstrated by absolute values of optical contrast values (at 405 nm) in the range of |Δn|+|Δk| = 1.88-3.75 reaching maximum for layer containing 8 at% of Sc.

Zobrazit více v PubMed

Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. DOI

Adam, J. L. & Zhang, X.

Noe, P., Vallee, C., Hippert, F., Fillot, F. & Raty, J. Y. Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues. DOI

Blanc, W. et al. The past, present and future of photonic glasses: a review in homage to the United Nations International Year of glass 2022. DOI

Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. DOI

Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. & Takao, M. Rapid-phase transitions of GeTe‐Sb DOI

Iwasaki, H., Ide, Y., Harigaya, M., Kageyama, Y. & Fujimura, I. Completely erasable phase change Optical Disk, Japan. DOI

Raoux, S., Welnic, W. & Ielmini, D. Phase change materials and their application to nonvolatile Memories. PubMed DOI

Friedrich, I., Weidenhof, V., Njoroge, W., Franz, P. & Wuttig, M. Structural transformations of films studied by electrical resistance measurements. DOI

Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. DOI

Zhang, W., Mazzarello, R., Wuttig, M. & Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. DOI

Gholipour, B. et al. Roadmap on Chalcogenide photonics. DOI

Prabhathan, P. et al. Roadmap for phase change materials in photonics and beyond. PubMed PMC

Müller, P. C., Elliott, S. R., Dronskowski, R. & Jones, R. O. Chemical bonding in phase-change chalcogenides. PubMed DOI

Wuttig, M. et al. Revisiting the nature of chemical bonding in chalcogenides to explain and design their properties. PubMed DOI

Bala, N. et al. Recent advances in doped Ge DOI

Sandhu, S., Kumar, S. & Thangaraj, R. Study of aluminium-modified Ge DOI

Wang, G. et al. Improved thermal and electrical properties of Al-doped Ge DOI

Wei, S. J. et al. Phase change behavior in titanium-doped Ge DOI

Park, J. & Bae, J. Effect of Ti diffusion on the microstructure of Ge PubMed

Zhu, Y. Q. et al. Ni-doped GST materials for high speed phase change memory applications. DOI

Gao, Q. & Chen, L. Effect of Cu doping on microstructure and thermal stability of Ge DOI

Ding, K. et al. Study on the Cu-doped Ge DOI

Buller, S. et al. Influence of partial substitution of Te by Se and Ge by Sn on the properties of the blu-ray phase-change material Ge DOI

Li, Z. G. et al. Changes in electrical and structural properties of phase-change Ge-Sb-Te films by Zr addition. DOI

Park, T. J., Choi, S. Y. & Kang, M. J. Phase transition characteristics of Bi/Sn doped Ge DOI

Guo, P. et al. Sarangan, Tungsten-doped Ge DOI

Guo, S. et al. Temperature and concentration dependent crystallization behavior of Ge DOI

Wang, G. et al. Phase change behaviors of Zn-doped Ge DOI

Wang, Q. et al. Metal Doping of Phase Change materials: atomic arrangement of Cr-Doped Ge DOI

Tan, Z. et al. Ruthenium doped Ge DOI

Rao, F. et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. PubMed DOI

Chen, X. et al. Neuromorphic photonic memory devices using ultrafast, non-volatile phase-change materials. PubMed DOI

Ding, K. et al. Recipe for ultrafast and persistent phase-change memory materials. DOI

Chen, B. et al. Insights into the heterogeneous nuclei of an ultrafast-crystallizing glassy solid. DOI

Song, T. et al. Metal–insulator transition in Sc DOI

Schenk, F. M. et al. Phase-change memory from molecular tellurides. PubMed DOI PMC

Hu, S., Liu, B., Li, Z., Zhou, J. & Sun, Z. Identifying optimal dopants for Sb DOI

Zhou, Y. et al. Bonding similarities and differences between Y–Sb–Te and Sc–Sb–Te phase-change memory materials. DOI

Chen, X. et al. Scandium doping brings speed improvement in Sb PubMed DOI PMC

Wang, Y. et al. High thermal stability and fast speed phase change memory by optimizing GeSbTe with scandium doping. DOI

Wang, Y. et al. Scandium doped Ge DOI

Cody, G. D. (ed)

Baudet, E. et al. Selenide sputtered films development for MIR environmental sensor. DOI

Baudet, E. et al. Experimental design approach for deposition optimization of RF sputtered chalcogenide thin films devoted to environmental optical sensors. PubMed DOI PMC

Tiwald, T. E., Thompson, D. W., Woollam, J. A., Paulson, W. & Hance, R. Application of IR variable angle spectroscopic ellipsometry to the determination of free carrier concentration depth profiles. DOI

Bouska, M., Nazabal, V., Gutwirth, J., Halenkovic, T. & Nemec, P. Radio-frequency magnetron co-sputtered Ge-Sb-Te phase change thin films. DOI

Zewdie, G. M., Debelab, T. T. & Asres, G. A. Effect of temperature on structural, dynamical, and electronic properties of Sc PubMed DOI PMC

Nemec, P., Prikryl, J., Nazabal, V. & Frumar, M. Optical characteristics of pulsed laser deposited Ge–Sb–Te thin films studied by spectroscopic ellipsometry. DOI

Bruggeman, D. A. G. Berechnung Verschiedener Physikalischer Konstanten Von Heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten Der Mischkörper Aus Isotropen Substanzen. DOI

Yamada, N. Origin, secret, and application of the ideal phase-change material GeSbTe. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...