Sc-doped GeTe thin films prepared by radio-frequency magnetron sputtering
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-07635S
Grantová Agentura České Republiky
22-07635S
Grantová Agentura České Republiky
22-07635S
Grantová Agentura České Republiky
22-07635S
Grantová Agentura České Republiky
LM2023037
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023037
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39753741
PubMed Central
PMC11698982
DOI
10.1038/s41598-024-84963-3
PII: 10.1038/s41598-024-84963-3
Knihovny.cz E-zdroje
- Klíčová slova
- Germanium telluride, Phase change materials, Scandium doping, Thin films,
- Publikační typ
- časopisecké články MeSH
Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have Ge48Te52, Ge46Te50Sc4, Ge44Te48Sc8, Ge43Te47Sc10 and Ge41Te45Sc14 chemical composition. The crystallization temperatures were found in the region of ~ 153-272 °C and they increase with scandium content. Upon amorphous-crystalline material phase change, large changes in sheet resistance were measured, with electrical contrast in terms of sheet resistance ratio Rannealed/Ras-deposited in the range of 1.37.10-4 - 9.1.10-7. Simultaneously, huge variations of optical functions were found as demonstrated by absolute values of optical contrast values (at 405 nm) in the range of |Δn|+|Δk| = 1.88-3.75 reaching maximum for layer containing 8 at% of Sc.
Department of Chemistry Faculty of Science Masaryk University Kotlářská 2 Brno 611 37 Czech Republic
Zobrazit více v PubMed
Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. DOI
Adam, J. L. & Zhang, X.
Noe, P., Vallee, C., Hippert, F., Fillot, F. & Raty, J. Y. Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues. DOI
Blanc, W. et al. The past, present and future of photonic glasses: a review in homage to the United Nations International Year of glass 2022. DOI
Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. DOI
Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. & Takao, M. Rapid-phase transitions of GeTe‐Sb DOI
Iwasaki, H., Ide, Y., Harigaya, M., Kageyama, Y. & Fujimura, I. Completely erasable phase change Optical Disk, Japan. DOI
Raoux, S., Welnic, W. & Ielmini, D. Phase change materials and their application to nonvolatile Memories. PubMed DOI
Friedrich, I., Weidenhof, V., Njoroge, W., Franz, P. & Wuttig, M. Structural transformations of films studied by electrical resistance measurements. DOI
Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. DOI
Zhang, W., Mazzarello, R., Wuttig, M. & Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. DOI
Gholipour, B. et al. Roadmap on Chalcogenide photonics. DOI
Prabhathan, P. et al. Roadmap for phase change materials in photonics and beyond. PubMed PMC
Müller, P. C., Elliott, S. R., Dronskowski, R. & Jones, R. O. Chemical bonding in phase-change chalcogenides. PubMed DOI
Wuttig, M. et al. Revisiting the nature of chemical bonding in chalcogenides to explain and design their properties. PubMed DOI
Bala, N. et al. Recent advances in doped Ge DOI
Sandhu, S., Kumar, S. & Thangaraj, R. Study of aluminium-modified Ge DOI
Wang, G. et al. Improved thermal and electrical properties of Al-doped Ge DOI
Wei, S. J. et al. Phase change behavior in titanium-doped Ge DOI
Park, J. & Bae, J. Effect of Ti diffusion on the microstructure of Ge PubMed
Zhu, Y. Q. et al. Ni-doped GST materials for high speed phase change memory applications. DOI
Gao, Q. & Chen, L. Effect of Cu doping on microstructure and thermal stability of Ge DOI
Ding, K. et al. Study on the Cu-doped Ge DOI
Buller, S. et al. Influence of partial substitution of Te by Se and Ge by Sn on the properties of the blu-ray phase-change material Ge DOI
Li, Z. G. et al. Changes in electrical and structural properties of phase-change Ge-Sb-Te films by Zr addition. DOI
Park, T. J., Choi, S. Y. & Kang, M. J. Phase transition characteristics of Bi/Sn doped Ge DOI
Guo, P. et al. Sarangan, Tungsten-doped Ge DOI
Guo, S. et al. Temperature and concentration dependent crystallization behavior of Ge DOI
Wang, G. et al. Phase change behaviors of Zn-doped Ge DOI
Wang, Q. et al. Metal Doping of Phase Change materials: atomic arrangement of Cr-Doped Ge DOI
Tan, Z. et al. Ruthenium doped Ge DOI
Rao, F. et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. PubMed DOI
Chen, X. et al. Neuromorphic photonic memory devices using ultrafast, non-volatile phase-change materials. PubMed DOI
Ding, K. et al. Recipe for ultrafast and persistent phase-change memory materials. DOI
Chen, B. et al. Insights into the heterogeneous nuclei of an ultrafast-crystallizing glassy solid. DOI
Song, T. et al. Metal–insulator transition in Sc DOI
Schenk, F. M. et al. Phase-change memory from molecular tellurides. PubMed DOI PMC
Hu, S., Liu, B., Li, Z., Zhou, J. & Sun, Z. Identifying optimal dopants for Sb DOI
Zhou, Y. et al. Bonding similarities and differences between Y–Sb–Te and Sc–Sb–Te phase-change memory materials. DOI
Chen, X. et al. Scandium doping brings speed improvement in Sb PubMed DOI PMC
Wang, Y. et al. High thermal stability and fast speed phase change memory by optimizing GeSbTe with scandium doping. DOI
Wang, Y. et al. Scandium doped Ge DOI
Cody, G. D. (ed)
Baudet, E. et al. Selenide sputtered films development for MIR environmental sensor. DOI
Baudet, E. et al. Experimental design approach for deposition optimization of RF sputtered chalcogenide thin films devoted to environmental optical sensors. PubMed DOI PMC
Tiwald, T. E., Thompson, D. W., Woollam, J. A., Paulson, W. & Hance, R. Application of IR variable angle spectroscopic ellipsometry to the determination of free carrier concentration depth profiles. DOI
Bouska, M., Nazabal, V., Gutwirth, J., Halenkovic, T. & Nemec, P. Radio-frequency magnetron co-sputtered Ge-Sb-Te phase change thin films. DOI
Zewdie, G. M., Debelab, T. T. & Asres, G. A. Effect of temperature on structural, dynamical, and electronic properties of Sc PubMed DOI PMC
Nemec, P., Prikryl, J., Nazabal, V. & Frumar, M. Optical characteristics of pulsed laser deposited Ge–Sb–Te thin films studied by spectroscopic ellipsometry. DOI
Bruggeman, D. A. G. Berechnung Verschiedener Physikalischer Konstanten Von Heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten Der Mischkörper Aus Isotropen Substanzen. DOI
Yamada, N. Origin, secret, and application of the ideal phase-change material GeSbTe. DOI