Revisiting the Nature of Chemical Bonding in Chalcogenides to Explain and Design their Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
SFB 917
Deutsche Forschungsgemeinschaft
NEUROSYS
Federal Ministry of Education and Research
p0020115
RWTH Aachen University
JARA0229
RWTH Aachen University
JARA0236
RWTH Aachen University
2.5020.11
FNRS
1117545
Fédération Wallonie-Bruxelles
J.0154.21
FNRS CDR project ABIGLO
PubMed
36456187
DOI
10.1002/adma.202208485
Knihovny.cz E-zdroje
- Klíčová slova
- material design, material maps, metavalent bonding, property predictors, quantum chemical bonding descriptors,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Quantum chemical bonding descriptors have recently been utilized to design materials with tailored properties. Their usage to facilitate a quantitative description of bonding in chalcogenides as well as the transition between different bonding mechanisms is reviewed. More importantly, these descriptors can also be employed as property predictors for several important material characteristics, including optical and transport properties. Hence, these quantum chemical bonding descriptors can be utilized to tailor material properties of chalcogenides relevant for thermoelectrics, photovoltaics, and phase-change memories. Relating material properties to bonding mechanisms also shows that there is a class of materials, which are characterized by unconventional properties such as a pronounced anharmonicity, a large chemical bond polarizability, and strong optical absorption. This unusual property portfolio is attributed to a novel bonding mechanism, fundamentally different from ionic, metallic, and covalent bonding, which is called "metavalent." In the concluding section, a number of promising research directions are sketched, which explore the nature of the property changes upon changing bonding mechanism and extend the concept of quantum chemical property predictors to more complex compounds.
1 Institute of Physics Physics of Novel Materials RWTH Aachen University 52056 Aachen Germany
CESAM B5 Université de Liège Sart Tilman B4000 Belgium
Jülich Aachen Research Alliance RWTH Aachen University 52056 Aachen Germany
Zobrazit více v PubMed
M. Kulbak, D. Cahen, G. Hodes, J. Phys. Chem. Lett. 2015, 6, 2452.
M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506.
M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, Sci. Rep. 2012, 2, 591.
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
M. Wuttig, C.-F. Schön, M. Schumacher, J. Robertson, P. Golub, E. Bousquet, C. Gatti, J.-Y. Raty, Adv. Funct. Mater. 2022, 32, 2110166.
M. I. Eremets, V. S. Minkov, A. P. Drozdov, P. P. Kong, V. Ksenofontov, S. I. Shylin, S. L. Bud'ko, R. Prozorov, F. F. Balakirev, D. Sun, S. Mozaffari, L. Balicas, J. Supercond. Novel Magn. 2022, 35, 965.
A. Hayat, P. Zareapour, S. Y. F. Zhao, A. Jain, I. G. Savelyev, M. Blumin, Z. Xu, A. Yang, G. D. Gu, H. E. Ruda, S. Jia, R. J. Cava, A. M. Steinberg, K. S. Burch, Phys. Rev. X 2012, 2, 41019.
C. Felser, X.-L. Qi, MRS Bull. 2014, 39, 843.
H. J. Snaith, Nat. Mater. 2018, 17, 372.
M. G. Vergniory, B. J. Wieder, L. Elcoro, S. S. P. Parkin, C. Felser, B. A. Bernevig, N. Regnault, Science 2022, 376, eabg9094.
M. Wuttig, N. Yamada, Nat. Mater. 2007, 6, 824.
A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, APL Mater. 2013, 1, 11002.
S. Curtarolo, W. Setyawan, G. L. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. J. Mehl, H. T. Stokes, D. O. Demchenko, D. Morgan, Comput. Mater. Sci. 2012, 58, 218.
A. Zunger, Nat. Rev. Chem. 2018, 2, 0121.
K. Gavroglou, Neither Physics Nor Chemistry: A History of Quantum Chemistry, MIT Press, Cambridge, UK 2011.
L. Pauling, Cornell University, Cornell University Press, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, Cornell University Press, Ithaca, NY, USA 1960.
S. G. Brush, Stud. Hist. Philos. Sci., Part A 1999, 30, 21.
S. G. Brush, Stud. Hist. Philos. Sci., Part A 1999, 30, 263.
S. Shaik, P. C. Hiberty, in Reviews in Computational Chemistry (Eds: K. B. Lipkowitz, R. Larter, T. R. Cundari), John Wiley & Sons, Ltd., New York 2004, p. 1.
J. C. Slater, Phys. Rev. 1932, 41, 255.
J. H. van Vleck, A. Sherman, Rev. Mod. Phys. 1935, 7, 167.
Walter Kohn Nobel Prize lecture, https://www.nobelprize.org/uploads/2018/06/kohn-lecture.pdf (accessed: November 2022).
J. H. van Vleck, Phys. Rev. 1936, 49, 232.
Á. M. Pendás, C. Gatti, in Complementary Bonding Analysis (Ed: S. Grabowsky), DeGruyter, Boston, MA, USA 2021.
P. L. A. Popelier, in Applications of Topological Methods in Molecular Chemistry, Springer, Cham, Switzerland 2016, p. 23.
R. F. Bader, Atoms in Molecules: A Quantum Theory, Clarendon Press, Oxford, UK 1990.
C. Gatti, Z. Kristallogr. - Cryst. Mater. 2005, 220, 399.
C. Gatti, T. R. Cundari, in Modern Charge-Density Analysis, (Eds: C. Gatti, P. Macchi), Springer, Dordrecht, The Netherlands 2011, p. 1.
G. Saleh, D. Ceresoli, G. Macetti, C. Gatti, in Computational Materials Discovery (Eds: A. R. Oganov, G. Saleh, A. G. Kvashnin), Royal Society of Chemistry, London, UK 2018, pp. 117-175.
P. Golub, A. I. Baranov, J. Chem. Phys. 2016, 145, 154107.
A. I. Baranov, M. Kohout, J. Comput. Chem. 2011, 32, 2064.
A. Otero-de-la-Roza, E. R. Johnson, V. Luaña, Comput. Phys. Commun. 2014, 185, 1007.
R. Dronskowski, P. E. Bloechl, J. Phys. Chem. 1993, 97, 8617.
S. Maintz, V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Comput. Chem. 2016, 37, 1030.
A. Genoni, L. Bučinský, N. Claiser, J. Contreras-García, B. Dittrich, P. M. Dominiak, E. Espinosa, C. Gatti, P. Giannozzi, J.-M. Gillet, D. Jayatilaka, P. Macchi, A. Ø. Madsen, L. Massa, C. F. Matta, K. M. Merz, P. N. H. Nakashima, H. Ott, U. Ryde, K. Schwarz, M. Sierka, S. Grabowsky, Chemistry 2018, 24, 10881.
T. S. Koritsanszky, P. Coppens, Chem. Rev. 2001, 101, 1583.
R. F. Stewart, Chem. Phys. Lett. 1979, 65, 335.
P. Coppens, X-Ray Charge Densities and Chemical Bonding, International Union of Crystallography, New York 1997.
H. Kasai, K. Tolborg, M. Sist, J. Zhang, V. R. Hathwar, M. Ø. Filsø, S. Cenedese, K. Sugimoto, J. Overgaard, E. Nishibori, B. B. Iversen, Nat. Mater. 2018, 17, 249.
K. Tolborg, B. B. Iversen, Chemistry 2019, 25, 15010.
B. D. Dunnington, J. R. Schmidt, J. Chem. Theory Comput. 2012, 8, 1902.
N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, D. Vanderbilt, Rev. Mod. Phys. 2012, 84, 1419.
R. Hoffmann, Solids and Surfaces: A Chemist's View of Bonding in Extended Structures, John Wiley & Sons, New York 2002.
P. Ball, Nature 2011, 469, 26.
M. L. Cohen, J. R. Chelikowsky, in Electronic Structure and Optical Properties of Semiconductors, (Eds: M. Cardona, P. Fulde, K. von Klitzing, H.-J. Queisser), Springer, Berlin/Heidelberg, Germany 1988, p. 172.
H. Krebs, Fundamentals of Inorganic Crystal Chemistry, McGraw-Hill, New York 1968.
G. Lucovsky, R. M. White, Phys. Rev. B 1973, 8, 660.
K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Nat. Mater. 2008, 7, 653.
J. Hempelmann, P. C. Müller, C. Ertural, R. Dronskowski, Angew. Chem., Int. Ed. 2022, 61, e202115778.
T. H. Lee, S. R. Elliott, Adv. Mater. 2020, 32, 2000340.
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, et al., J. Phys.: Condens. Matter 2009, 21, 395502.
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, et al., J. Phys.: Condens. Matter 2017, 29, 465901.
I. Mayer, Chem. Phys. Lett. 1983, 97, 270.
K. B. Wiberg, Tetrahedron 1968, 24, 1083.
P. C. Müller, C. Ertural, J. Hempelmann, R. Dronskowski, J. Phys. Chem. C 2021, 125, 7959.
R. Hoppe, Z. Kristallogr. - Cryst. Mater. 1979, 150, 23.
R. F. W. Bader, Acc. Chem. Res. 1985, 18, 9.
J. G. Angyan, M. Loos, I. Mayer, J. Phys. Chem. 1994, 98, 5244.
R. L. Fulton, S. T. Mixon, J. Phys. Chem. 1993, 97, 7530.
J.-Y. Raty, M. Schumacher, P. Golub, V. L. Deringer, C. Gatti, M. Wuttig, Adv. Mater. 2019, 31, 1806280.
R. Ponec, J. Math. Chem. 1997, 21, 323.
R. Ponec, J. Math. Chem. 1998, 23, 85.
W. L. Luken, Croat. Chem. Acta 1934, 57, 1283.
Y. Cheng, O. Cojocaru-Mirédin, J. Keutgen, Y. Yu, M. Küpers, M. Schumacher, P. Golub, J.-Y. Raty, R. Dronskowski, M. Wuttig, Adv. Mater. 2019, 31, 1904316.
M. Wuttig, V. L. Deringer, X. Gonze, C. Bichara, J.-Y. Raty, Adv. Mater. 2018, 30, 1803777.
A. Heßler, S. Wahl, T. Leuteritz, A. Antonopoulos, C. Stergianou, C.-F. Schön, L. Naumann, N. Eicker, M. Lewin, T. W. W. Maß, M. Wuttig, S. Linden, T. Taubner, Nat. Commun. 2021, 12, 924.
G. N. Lewis, J. Am. Chem. Soc. 1916, 38, 762.
I. Langmuir, J. Am. Chem. Soc. 1919, 41, 868.
A. E. van Arkel, Molecules and Crystals in Inorganic Chemistry, Interscience Publishers, New York 1956.
J. A. A. Ketelaar, Chemical Constitution: An Introduction to the Theory of the Chemical Bond, Amsterdam, The Netherlands 1958.
B. J. Kooi, M. Wuttig, Adv. Mater. 2020, 32, 1908302.
P. B. Littlewood, J. Phys. C: Solid State Phys. 1980, 13, 4855.
J. John, A. N. Bloch, Phys. Rev. Lett. 1974, 33, 1095.
G. Simons, A. N. Bloch, Phys. Rev. B 1973, 7, 2754.
J. C. Phillips, Solid State Commun. 1977, 22, 549.
J. R. Chelikowsky, J. C. Phillips, Phys. Rev. B 1978, 17, 2453.
H. Ibach, H. Lüth, Solid-State Physics: An Introduction to Principles of Materials Science, Springer, Berlin/Heidelberg, Germany 2009.
J.-Y. Raty, M. Wuttig, J. Phys. D: Appl. Phys. 2020, 53, 234002.
C.-F. Schön, S. van Bergerem, C. Mattes, A. Yadav, M. Grohe, L. Kobbelt, M. Wuttig, Sci. Adv. 2022, 8, eade0828.
S. Maier, S. Steinberg, Y. Cheng, C.-F. Schön, M. Schumacher, R. Mazzarello, P. Golub, R. Nelson, O. Cojocaru-Mirédin, J.-Y. Raty, M. Wuttig, Adv. Mater. 2020, 32, 2005533.
E. Fermi, Nuclear Physics, Univ. of Chicago Press, Chicago 1974.
P. A. M. Dirac, Proc. R. Soc. London, Ser. A 1927, 114, 243.
M. K. Brod, M. Y. Toriyama, G. J. Snyder, Chem. Mater. 2020, 32, 9771.
M. Cagnoni, D. Führen, M. Wuttig, Adv. Mater. 2018, 30, 1801787.
P. B. Littlewood, J. Phys. C: Solid State Phys. 1980, 13, 4875.
J. E. Jaffe, A. Zunger, Phys. Rev. B 1983, 28, 5822.
H. Neumann, Cryst. Res. Technol. 1983, 18, 901.
A. Zunger, J. E. Jaffe, Phys. Rev. Lett. 1983, 51, 662.
J. E. Jaffe, A. Zunger, Phys. Rev. B 1984, 29, 1882.
M. Buffiere, D. S. Dhawale, F. El-Mellouhi, Energy Technol. 2019, 7, 1900819.
R. Scheer, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices, John Wiley & Sons Incorporated, Weinheim, Germany 2008.
D. B. Mitzi, in Progress in Inorganic Chemistry, (Ed: K. D. Karlin), John Wiley & Sons, Ltd., New York 2007, p. 1.
M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
S. Raoux, W. Wełnic, D. Ielmini, Chem. Rev. 2010, 110, 240.
N. I. Zheludev, J. Opt. A: Pure Appl. Opt. 2006, 8, S1.
M. Wuttig, H. Bhaskaran, T. Taubner, Nat. Photonics 2017, 11, 465.
B. Huang, J. Robertson, Phys. Rev. B 2010, 81, 81204.
G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, M. Kund, Appl. Phys. Lett. 2009, 95, 43108.
W. Zhang, R. Mazzarello, M. Wuttig, E. Ma, Nat. Rev. Mater. 2019, 4, 150.
D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, S. R. Elliott, Science 2012, 336, 1566.
C. Persch, M. J. Müller, A. Yadav, J. Pries, N. Honné, P. Kerres, S. Wei, H. Tanaka, P. Fantini, E. Varesi, F. Pellizzer, M. Wuttig, Nat. Commun. 2021, 12, 4978.
P. G. Debenedetti, F. H. Stillinger, Nature 2001, 410, 259.
Y. Yu, M. Cagnoni, O. Cojocaru-Mirédin, M. Wuttig, Adv. Funct. Mater. 2020, 30, 1904862.
S. Shaik, D. Danovich, J. M. Galbraith, B. Braïda, W. Wu, P. C. Hiberty, Angew. Chem., Int. Ed. 2020, 59, 984.
J. K. Burdett, Chemical Bonding in Solids, Oxford University Press, Oxford 1995.
M. Zhu, O. Cojocaru-Mirédin, A. M. Mio, J. Keutgen, M. Küpers, Y. Yu, J.-Y. Cho, R. Dronskowski, M. Wuttig, Adv. Mater. 2018, 30, 1706735.
L. Guarneri, S. Jakobs, A. von Hoegen, S. Maier, M. Xu, M. Zhu, S. Wahl, C. Teichrib, Y. Zhou, O. Cojocaru-Mirédin, M. Raghuwanshi, C.-F. Schön, M. Drögeler, C. Stampfer, R. P. S. M. Lobo, A. Piarristeguy, A. Pradel, J.-Y. Raty, M. Wuttig, Adv. Mater. 2021, 33, 2102356.
M. Raghuwanshi, O. Cojocaru-Mirédin, M. Wuttig, Nano Lett. 2020, 20, 116.
Numerical Data and Functional Relationships in Science and Technology: New Series, Vol. 41C (Eds: O. Madelung, U. Rössler, M. Schulz, O. Madelung, R. Clasen, H. Landolt, R. Börnstein, W. Martienssen), Springer, Berlin, Germany 1998, p. 1.
R. Bochicchio, R. Ponec, A. Torre, L. Lain, Theor. Chem. Acc. 2001, 105, 292.
C. E. Housecroft, A. G. Sharpe, Inorganic Chemistry, Pearson, London, UK 2012.
S. Shaik, D. Danovich, J. M. Galbraith, B. Braïda, W. Wu, P. C. Hiberty, Angew. Chem., Int. Ed. 2020, 59, 984.
D. Kim, personal communication.
A. Gallo-Bueno, M. Kohout, E. Francisco, Á. Martín Pendás, J. Chem. Theory Comput. 2022, 18, 4245.
Y. Luo, Z. Ma, S. Hao, S. Cai, Z.-Z. Luo, C. Wolverton, V. P. Dravid, J. Yang, Q. Yan, M. G. Kanatzidis, J. Am. Chem. Soc. 2022, 144, 1445.
D. Sarkar, S. Roychowdhury, R. Arora, T. Ghosh, A. Vasdev, B. Joseph, G. Sheet, U. V. Waghmare, K. Biswas, Angew. Chem., Int. Ed. 2021, 60, 10350.
C. Rodenkirchen, M. Cagnoni, S. Jakobs, Y. Cheng, J. Keutgen, Y. Yu, M. Wuttig, O. Cojocaru-Mirédin, Adv. Funct. Mater. 2020, 30, 1910039.
M. Al-Fahdi, X. Zhang, M. Hu, J. Mater. Sci. 2021, 56, 18534.
L. Elalfy, D. Music, M. Hu, Phys. Rev. B 2021, 103, 75203.
K. Tolborg, B. B. Iversen, Chem. Mater. 2021, 33, 5308.
K. A. U. Holm, N. Roth, C. M. Zeuthen, K. Tolborg, A. A. Feidenhans'l, B. B. Iversen, Phys. Rev. B 2020, 102, 24112.
K. A. U. Holm, N. Roth, C. M. Zeuthen, B. B. Iversen, Phys. Rev. B 2021, 103, 224302.
A. M. Mio, P. M. Konze, A. Meledin, M. Küpers, M. Pohlmann, M. Kaminski, R. Dronskowski, J. Mayer, M. Wuttig, Adv. Funct. Mater. 2019, 29, 1902332.
P. Noé, A. Verdy, F. d'Acapito, J.-B. Dory, M. Bernard, G. Navarro, J.-B. Jager, J. Gaudin, J.-Y. Raty, Sci. Adv. 2020, 6, eaay2830.
W. J. Yang, T. Ha, B. C. Park, K.-S. Jeong, J. Y. Park, D. Kim, C. Lee, J. Park, M.-H. Cho, ACS Nano 2022, 16, 2024.
V. P. Cuenca-Gotor, J. Á. Sans, O. Gomis, A. Mujica, S. Radescu, A. Muñoz, P. Rodríguez-Hernández, E. L. Da Silva, C. Popescu, J. Ibañez, R. Vilaplana, F. J. Manjón, Phys. Chem. Chem. Phys. 2020, 22, 3352.
N. V. Morozova, I. V. Korobeynikov, N. Miyajima, S. V. Ovsyannikov, Adv. Sci. 2022, 9, e2103720.
J. A. Sans, R. Vilaplana, E. L. Da Silva, C. Popescu, V. P. Cuenca-Gotor, A. Andrada-Chacón, J. Sánchez-Benitez, O. Gomis, A. L. J. Pereira, P. Rodríguez-Hernández, A. Muñoz, D. Daisenberger, B. García-Domene, A. Segura, D. Errandonea, R. S. Kumar, O. Oeckler, P. Urban, J. Contreras-García, F. J. Manjón, Inorg. Chem. 2020, 59, 9900.
C. Bellin, A. Pawbake, L. Paulatto, K. Béneut, J. Biscaras, C. Narayana, A. Polian, D. J. Late, A. Shukla, Phys. Rev. Lett. 2020, 125, 145301.
F. J. Manjón, J. Á. Sans, P. Rodríguez-Hernández, A. Muñoz, Minerals 2021, 11, 1283.
S. Sun, L. Zhu, W. Zhang, Phys. Status Solidi RRL 2022, 16, 2100626.
A. Edwards, A. Pineda, P. Schultz, M. Martin, A. Thompson, H. Hjalmarson, C. Umrigar, Phys. Rev. B 2006, 73, 45210.
T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, M. Wuttig, Nat. Mater. 2011, 10, 202.
W. Zhang, A. Thiess, P. Zalden, R. Zeller, P. H. Dederichs, J.-Y. Raty, M. Wuttig, S. Blügel, R. Mazzarello, Nat. Mater. 2012, 11, 952.
K. S. Siegert, F. R. L. Lange, E. R. Sittner, H. Volker, C. Schlockermann, T. Siegrist, M. Wuttig, Rep. Prog. Phys. 2015, 78, 13001.
J. Reindl, H. Volker, N. P. Breznay, M. Wuttig, npj Quantum Mater. 2019, 4, 57.
I. Korzhovska, H. Deng, L. Zhao, Y. Deshko, Z. Chen, M. Konczykowski, S. Zhao, S. Raoux, L. Krusin-Elbaum, npj Quantum Mater. 2020, 5, 39.
Y. Xu, X. Wang, W. Zhang, L. Schäfer, J. Reindl, F. vom Bruch, Y. Zhou, V. Evang, J.-J. Wang, V. L. Deringer, E. Ma, M. Wuttig, R. Mazzarello, Adv. Mater. 2021, 33, 2006221.
D. Giri, L. Williams, A. Mukherjee, K. Rajan, J. Chem. Phys. 2021, 154, 124105.
H. H. H. Osman, F. J. Manjón, Phys. Chem. Chem. Phys. 2022, 24, 9936.
Y. Wu, P. Qiu, Y. Yu, Y. Xiong, T. Deng, O. Cojocaru-Mirédin, M. Wuttig, X. Shi, L. Chen, J. Materiomics 2022, 8, 1095.
M. Küpers, P. M. Konze, S. Maintz, S. Steinberg, A. M. Mio, O. Cojocaru-Mirédin, M. Zhu, M. Müller, M. Luysberg, J. Mayer, M. Wuttig, R. Dronskowski, Angew. Chem., Int. Ed. 2017, 56, 10204.
K. Momma, F. Izumi, J. Appl. Crystallogr. 2008, 41, 653.
N. N. Greenwood, Chemistry of the Elements, Elsevier-Butterworth-Heinemann, Amsterdam, The Netherlands 2010.
CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (Eds: W. M. Haynes, D. R. Lide), CRC Press; Taylor & Francis, Boca Raton, FL; London, UK 2011.
R. E. Bedford, G. Bonnier, H. Maas, F. Pavese, Metrologia 1996, 33, 133.