Positive associations among rare species and their persistence in ecological assemblages

. 2020 Jan ; 4 (1) : 40-45. [epub] 20191216

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31844189
Odkazy

PubMed 31844189
DOI 10.1038/s41559-019-1053-5
PII: 10.1038/s41559-019-1053-5
Knihovny.cz E-zdroje

According to the competitive exclusion principle, species with low competitive abilities should be excluded by more efficient competitors; yet, they generally remain as rare species. Here, we describe the positive and negative spatial association networks of 326 disparate assemblages, showing a general organization pattern that simultaneously supports the primacy of competition and the persistence of rare species. Abundant species monopolize negative associations in about 90% of the assemblages. On the other hand, rare species are mostly involved in positive associations, forming small network modules. Simulations suggest that positive interactions among rare species and microhabitat preferences are the most probable mechanisms underpinning this pattern and rare species persistence. The consistent results across taxa and geography suggest a general explanation for the maintenance of biodiversity in competitive environments.

Centre de Recerca Ecològica i Aplicacions Forestals Campus de Bellaterra Cerdanyola del Vallès Spain

Climate Change Impacts and Risks in the Anthropocene Institute for Environmental Sciences University of Geneva Geneva Switzerland

Dendrolab Department of Earth Sciences University of Geneva Geneva Switzerland

Departamento de Biodiversidad Ecología y Evolución Universidad Complutense de Madrid Madrid Spain

Departamento de Biogeografía y Cambio Global Museo Nacional de Ciencias Naturales Madrid Spain

Departamento de Biología de la Conservación Estación Biológica de Doñana CSIC Seville Spain

Departamento de Biología Facultad de Ciencias Universidad Autónoma de Madrid Madrid Spain

Departamento de Biología Facultad de Ciencias Universidad de La Serena La Serena Chile

Departamento de Biología Geología Física y Química Inorgánica Universidad Rey Juan Carlos Madrid Spain

Departamento de Ciencias de la Vida Edificio de Ciencias Universidad de Alcalá Madrid Spain

Department F A Forel for Environmental and Aquatic Sciences University of Geneva Geneva Switzerland

Department of Botany Faculty of Sciences University of South Bohemia České Budějovice Czech Republic

Department of Fish Ecology and Evolution Eawag Kastanienbaum Switzerland

Department of Plant Biology and Ecology Pharmacy Faculty University of Basque Country Vitoria Gasteiz Spain

Higher Technical School of Agricultural and Forestry Engineering and Botanical Institute University of Castilla La Mancha Albacete Spain

Institute of Plant Sciences and Oeschger Centre for Climate Change Research University of Bern Bern Switzerland

Integrated Science Laboratory Department of Physics Umeå University Umeå Sweden

Laboratótio do Ecologia e Zoologia de Invertebrados Instituto de Ciências Biológicas Universidade Federal do Pará Belém do Pará Brazil

Plant Ecology Institute of Plant Sciences University of Bern Bern Switzerland

Plant Science University of Melbourne Burnley Campus Richmond Victoria Australia

UMR CNRS 5805 EPOC OASU Université de Bordeaux Site de Talence Pessac Gradignan Pessac France

Komentář v

PubMed

Zobrazit více v PubMed

Gaston, K. J. Rarity (Chapman and Hall, 1994).

Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960). DOI

Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961). DOI

Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974). DOI

Yenni, G., Adler, P. B. & Ernest, S. K. M. Strong self‐limitation promotes the persistence of rare species. Ecology 93, 456–461 (2012). DOI

Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Evol. Syst. 31, 343–366 (2000). DOI

Soliveres, S. et al. A missing link between facilitation and plant species coexistence: nurses benefit generally rare species more than common ones. J. Ecol. 103, 1183–1189 (2015). DOI

Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017). DOI

Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).

Durrett, R. & Levin, S. Spatial aspects of interspecific competition. Theor. Popul. Biol. 53, 30–43 (1998). DOI

McIntire, E. J. & Fajardo, A. Beyond description: the active and effective way to infer processes from spatial patterns. Ecology 90, 46–56 (2009). DOI

Arnan, X., Gaucherel, C. & Andersen, A. N. Dominance and species co-occurrence in highly diverse ant communities: a test of the interstitial hypothesis and discovery of a competition cascade. Oecologia 166, 783–794 (2011). DOI

Atkinson, W. D. & Shorrocks, B. Competition on a divided and ephemeral resource: a simulation model. J. Anim. Ecol. 50, 461–471 (1981). DOI

Hart, S. P., Usinowicz, J. & Levine, J. M. The spatial scales of species coexistence. Nat. Ecol. Evol. 1, 1066–1073 (2017). DOI

Chacón‐Labella, J., de la Cruz, M., Escudero, A. & Gomez-Aparicio, L. Evidence for a stochastic geometry of biodiversity: the effects of species abundance, richness and intraspecific clustering. J. Ecol. 105, 382–390 (2017). DOI

Saiz, H. et al. Evidence of structural balance in spatial ecological networks. Ecography 40, 733–741 (2017). DOI

Freilich, M. A., Wieters, E., Broitman, B. R., Marquet, P. A. & Navarrete, S. A. Species co‐occurrence networks: can they reveal trophic and non‐trophic interactions in ecological communities? Ecology 99, 690–699 (2018). DOI

Faisal, A., Dondelinger, F., Husmeier, D. & Beale, C. M. Inferring species interaction networks from species abundance data: a comparative evaluation of various statistical and machine learning methods. Ecol. Inform. 5, 451–464 (2010). DOI

Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2012). DOI

Borthagaray, A. I., Arim, M. & Marquet, P. A. Inferring species roles in metacommunity structure from species co-occurrence networks. Proc. Biol. Sci. 281, 20141425 (2014). DOI

Calatayud, J. et al. Positive associations among rare species and their persistence in ecological assemblages. figshare https://doi.org/10.6084/m9.figshare.9906092 (2019).

Ulrich, W. & Gotelli, N. J. Null model analysis of species associations using abundance data. Ecology 91, 3384–3397 (2010). DOI

Tilman, D. Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58, 338–348 (1977). DOI

Callaway, R. M. et al. Positive interactions among alpine plants increase with stress. Nature 417, 844–848 (2002). DOI

Allesina, S. & Levine, J. M. A competitive network theory of species diversity. Proc. Natl Acad. Sci. USA 108, 5638–5642 (2011). DOI

Gallien, L., Zimmermann, N. E., Levine, J. M. & Adler, P. B. The effects of intransitive competition on coexistence. Ecol. Lett. 20, 791–800 (2017). DOI

Comita, L. S., Muller-Landau, H. C., Aguilar, S. & Hubbell, S. P. Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329, 330–332 (2010). DOI

Cody, M. L. & Diamond, J. M. Ecology and Evolution of Communities (Harvard Univ. Press, 1975).

Bimler, M. D., Stouffer, D. B., Lai, H. R. & Mayfield, M. M. Accurate predictions of coexistence in natural systems require the inclusion of facilitative interactions and environmental dependency. J. Ecol. 106, 1839–1852 (2018). DOI

Schoener, T. W. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704–726 (1968). DOI

Rothman, K. J. No adjustments are needed for multiple comparisons. Epidemiology 1, 43–46 (1990). DOI

Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188 (2001). DOI

de Araújo, W. S., Vieira, M. C., Lewinsohn, T. M. & Almeida-Neto, M. Contrasting effects of land use intensity and exotic host plants on the specialization of interactions in plant-herbivore networks. PLoS ONE 10, e0115606 (2015). DOI

Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006). DOI

Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008 (2008). DOI

Colomer-de-Simón, P., Serrano, M. Á., Beiró, M. G., Alvarez-Hamelin, J. I. & Boguñá, M. Deciphering the global organization of clustering in real complex networks. Sci. Rep. 3, 2517 (2013). DOI

Fruchterman, T. M. J. & Reingold, E. M. Graph drawing by force‐directed placement. Softw. Pract. Exp. 21, 1129–1164 (1991). DOI

Bailey, R. G. Explanatory supplement to ecoregions map of the continents. Environ. Conserv. 16, 307–309 (1989). DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Key concepts and a world-wide look at plant recruitment networks

. 2025 Jun ; 100 (3) : 1127-1151. [epub] 20241227

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...