Positive associations among rare species and their persistence in ecological assemblages
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31844189
DOI
10.1038/s41559-019-1053-5
PII: 10.1038/s41559-019-1053-5
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- ekologie * MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
According to the competitive exclusion principle, species with low competitive abilities should be excluded by more efficient competitors; yet, they generally remain as rare species. Here, we describe the positive and negative spatial association networks of 326 disparate assemblages, showing a general organization pattern that simultaneously supports the primacy of competition and the persistence of rare species. Abundant species monopolize negative associations in about 90% of the assemblages. On the other hand, rare species are mostly involved in positive associations, forming small network modules. Simulations suggest that positive interactions among rare species and microhabitat preferences are the most probable mechanisms underpinning this pattern and rare species persistence. The consistent results across taxa and geography suggest a general explanation for the maintenance of biodiversity in competitive environments.
Centre de Recerca Ecològica i Aplicacions Forestals Campus de Bellaterra Cerdanyola del Vallès Spain
Dendrolab Department of Earth Sciences University of Geneva Geneva Switzerland
Departamento de Biodiversidad Ecología y Evolución Universidad Complutense de Madrid Madrid Spain
Departamento de Biogeografía y Cambio Global Museo Nacional de Ciencias Naturales Madrid Spain
Departamento de Biología de la Conservación Estación Biológica de Doñana CSIC Seville Spain
Departamento de Biología Facultad de Ciencias Universidad Autónoma de Madrid Madrid Spain
Departamento de Biología Facultad de Ciencias Universidad de La Serena La Serena Chile
Departamento de Ciencias de la Vida Edificio de Ciencias Universidad de Alcalá Madrid Spain
Department F A Forel for Environmental and Aquatic Sciences University of Geneva Geneva Switzerland
Department of Botany Faculty of Sciences University of South Bohemia České Budějovice Czech Republic
Department of Fish Ecology and Evolution Eawag Kastanienbaum Switzerland
Integrated Science Laboratory Department of Physics Umeå University Umeå Sweden
Plant Ecology Institute of Plant Sciences University of Bern Bern Switzerland
Plant Science University of Melbourne Burnley Campus Richmond Victoria Australia
UMR CNRS 5805 EPOC OASU Université de Bordeaux Site de Talence Pessac Gradignan Pessac France
Zobrazit více v PubMed
Gaston, K. J. Rarity (Chapman and Hall, 1994).
Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960). DOI
Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961). DOI
Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974). DOI
Yenni, G., Adler, P. B. & Ernest, S. K. M. Strong self‐limitation promotes the persistence of rare species. Ecology 93, 456–461 (2012). DOI
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Evol. Syst. 31, 343–366 (2000). DOI
Soliveres, S. et al. A missing link between facilitation and plant species coexistence: nurses benefit generally rare species more than common ones. J. Ecol. 103, 1183–1189 (2015). DOI
Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017). DOI
Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).
Durrett, R. & Levin, S. Spatial aspects of interspecific competition. Theor. Popul. Biol. 53, 30–43 (1998). DOI
McIntire, E. J. & Fajardo, A. Beyond description: the active and effective way to infer processes from spatial patterns. Ecology 90, 46–56 (2009). DOI
Arnan, X., Gaucherel, C. & Andersen, A. N. Dominance and species co-occurrence in highly diverse ant communities: a test of the interstitial hypothesis and discovery of a competition cascade. Oecologia 166, 783–794 (2011). DOI
Atkinson, W. D. & Shorrocks, B. Competition on a divided and ephemeral resource: a simulation model. J. Anim. Ecol. 50, 461–471 (1981). DOI
Hart, S. P., Usinowicz, J. & Levine, J. M. The spatial scales of species coexistence. Nat. Ecol. Evol. 1, 1066–1073 (2017). DOI
Chacón‐Labella, J., de la Cruz, M., Escudero, A. & Gomez-Aparicio, L. Evidence for a stochastic geometry of biodiversity: the effects of species abundance, richness and intraspecific clustering. J. Ecol. 105, 382–390 (2017). DOI
Saiz, H. et al. Evidence of structural balance in spatial ecological networks. Ecography 40, 733–741 (2017). DOI
Freilich, M. A., Wieters, E., Broitman, B. R., Marquet, P. A. & Navarrete, S. A. Species co‐occurrence networks: can they reveal trophic and non‐trophic interactions in ecological communities? Ecology 99, 690–699 (2018). DOI
Faisal, A., Dondelinger, F., Husmeier, D. & Beale, C. M. Inferring species interaction networks from species abundance data: a comparative evaluation of various statistical and machine learning methods. Ecol. Inform. 5, 451–464 (2010). DOI
Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2012). DOI
Borthagaray, A. I., Arim, M. & Marquet, P. A. Inferring species roles in metacommunity structure from species co-occurrence networks. Proc. Biol. Sci. 281, 20141425 (2014). DOI
Calatayud, J. et al. Positive associations among rare species and their persistence in ecological assemblages. figshare https://doi.org/10.6084/m9.figshare.9906092 (2019).
Ulrich, W. & Gotelli, N. J. Null model analysis of species associations using abundance data. Ecology 91, 3384–3397 (2010). DOI
Tilman, D. Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58, 338–348 (1977). DOI
Callaway, R. M. et al. Positive interactions among alpine plants increase with stress. Nature 417, 844–848 (2002). DOI
Allesina, S. & Levine, J. M. A competitive network theory of species diversity. Proc. Natl Acad. Sci. USA 108, 5638–5642 (2011). DOI
Gallien, L., Zimmermann, N. E., Levine, J. M. & Adler, P. B. The effects of intransitive competition on coexistence. Ecol. Lett. 20, 791–800 (2017). DOI
Comita, L. S., Muller-Landau, H. C., Aguilar, S. & Hubbell, S. P. Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329, 330–332 (2010). DOI
Cody, M. L. & Diamond, J. M. Ecology and Evolution of Communities (Harvard Univ. Press, 1975).
Bimler, M. D., Stouffer, D. B., Lai, H. R. & Mayfield, M. M. Accurate predictions of coexistence in natural systems require the inclusion of facilitative interactions and environmental dependency. J. Ecol. 106, 1839–1852 (2018). DOI
Schoener, T. W. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704–726 (1968). DOI
Rothman, K. J. No adjustments are needed for multiple comparisons. Epidemiology 1, 43–46 (1990). DOI
Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188 (2001). DOI
de Araújo, W. S., Vieira, M. C., Lewinsohn, T. M. & Almeida-Neto, M. Contrasting effects of land use intensity and exotic host plants on the specialization of interactions in plant-herbivore networks. PLoS ONE 10, e0115606 (2015). DOI
Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006). DOI
Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008 (2008). DOI
Colomer-de-Simón, P., Serrano, M. Á., Beiró, M. G., Alvarez-Hamelin, J. I. & Boguñá, M. Deciphering the global organization of clustering in real complex networks. Sci. Rep. 3, 2517 (2013). DOI
Fruchterman, T. M. J. & Reingold, E. M. Graph drawing by force‐directed placement. Softw. Pract. Exp. 21, 1129–1164 (1991). DOI
Bailey, R. G. Explanatory supplement to ecoregions map of the continents. Environ. Conserv. 16, 307–309 (1989). DOI
Key concepts and a world-wide look at plant recruitment networks