Key concepts and a world-wide look at plant recruitment networks
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CIPROM/2021/63
Generalitat Valenciana
PGC2018-100966-B-I00
Agencia Estatal de Investigación
PID2020-113157GB-100
Agencia Estatal de Investigación
TED2021-129926B-I00
Agencia Estatal de Investigación
PubMed
39727257
PubMed Central
PMC12120400
DOI
10.1111/brv.13177
Knihovny.cz E-zdroje
- Klíčová slova
- canopy service, ecological networks, facilitation, interaction strength, plant–plant interactions, recruitment niche, replacement networks, sapling bank, stress gradient hypothesis, strongly connected components,
- MeSH
- ekosystém * MeSH
- fyziologie rostlin * MeSH
- rostliny * klasifikace MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plant-plant interactions are major determinants of the dynamics of terrestrial ecosystems. There is a long tradition in the study of these interactions, their mechanisms and their consequences using experimental, observational and theoretical approaches. Empirical studies overwhelmingly focus at the level of species pairs or small sets of species. Although empirical data on these interactions at the community level are scarce, such studies have gained pace in the last decade. Studying plant-plant interactions at the community level requires knowledge of which species interact with which others, so an ecological networks approach must be incorporated into the basic toolbox of plant community ecology. The concept of recruitment networks (RNs) provides an integrative framework and new insights for many topics in the field of plant community ecology. RNs synthesise the set of canopy-recruit interactions in a local plant assemblage. Canopy-recruit interactions describe which ("canopy") species allow the recruitment of other species in their vicinity and how. Here we critically review basic concepts of ecological network theory as they apply to RNs. We use RecruitNet, a recently published worldwide data set of canopy-recruit interactions, to describe RN patterns emerging at the interaction, species, and community levels, and relate them to different abiotic gradients. Our results show that RNs can be sampled with high accuracy. The studies included in RecruitNet show a very high mean network completeness (95%), indicating that undetected canopy-recruit pairs must be few and occur very infrequently. Across 351,064 canopy-recruit pairs analysed, the effect of the interaction on recruitment was neutral in an average of 69% of the interactions per community, but the remaining interactions were positive (i.e. facilitative) five times more often than negative (i.e. competitive), and positive interactions had twice the strength of negative ones. Moreover, the frequency and strength of facilitation increases along a climatic aridity gradient worldwide, so the demography of plant communities is increasingly strongly dependent on facilitation as aridity increases. At network level, species can be ascribed to four functional types depending on their position in the network: core, satellite, strict transients and disturbance-dependent transients. This functional structure can allow a rough estimation of which species are more likely to persist. In RecruitNet communities, this functional structure most often departs from random null model expectation and could allow on average the persistence of 77% of the species in a local community. The functional structure of RNs also varies along the aridity gradient, but differently in shrubland than in forest communities. This variation suggests an increase in the probability of species persistence with aridity in forests, while such probability remains roughly constant along the gradient in shrublands. The different functional structure of RNs between forests and shrublands could contribute to explaining their co-occurrence as alternative stable states of the vegetation under the same climatic conditions. This review is not exhaustive of all the topics that can be addressed using the framework of RNs, but instead aims to present some of the interesting insights that it can bring to the field of plant community ecology.
Calle Norte 20 Baros Huesca 22712 Spain
Centre d'écologie fonctionnelle et évolutive 1919 route de Mende Montpellier Cedex 5 34293 France
Chair of Plant Ecology University of Bayreuth Building NWI Bayreuth D 95440 Germany
Department of Biology Aarhus University Ny Munkegade 114 116 Aarhus C DK 8000 Denmark
Department of Biology York University 4700 Keele Street Toronto Ontario M3J1P3 Canada
Department of Biosciences University of Milan Via Celoria 26 Milan 20133 Italy
Department of Ecology Faculty of Sciences Universidad Autónoma de Madrid Madrid 28049 Spain
Division of Ecology Department of Biology Hacettepe University Beytepe Ankara 06800 Türkiye
Estación Biológica de Doñana Calle Americo Vespucio 26 Sevilla 41092 Spain
Faculty of Forestry Technical University in Zvolen T G Masaryka 24 Zvolen Slovakia
Faculty of Pure and Applied Sciences Open University of Cyprus PO Box 12794 Nicosia 2252 Cyprus
Institute of Botany Ilia State University Room F 310 5 Cholokashvili Ave Tbilisi 0162 Georgia
Instituto de Ecología y Biodiversidad Casilla Santiago 653 Chile
Pyrenean Institute of Ecology Avda Montañana 1005 Zaragoza 50059 Spain
Servici Devesa Albufera Vivers Municipals de El Saler CV 500 km 8 5 Valencia 46012 Spain
Swiss Federal Institute for Forest Snow and Landscape Research Birmensdorf 8903 Switzerland
Wildland Resources Utah State University 5230 Old Main Hill Logan Utah 84322 5230 USA
Zobrazit více v PubMed
Abrams, P. A. (1987). On classifying interactions between populations. Oecologia 73, 272–281. PubMed
Adler, P. B. , Smull, D. , Beard, K. H. , Choi, R. T. , Furniss, T. , Kulmatiski, A. , Meiners, J. M. , Tredennick, A. T. & Veblen, K. E. (2018). Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecology Letters 21, 1319–1329. PubMed
Agrawal, A. A. , Ackerly, D. D. , Adler, F. , Arnold, A. E. , Cáceres, C. , Doak, D. F. , Post, E. , Hudson, P. J. , Maron, J. , Mooney, K. A. , Power, M. , Schemske, D. , Stachowicz, J. , Strauss, S. , Turner, M. G. & Werner, E. (2007). Filling key gaps in population and community ecology. Frontiers in Ecology and the Environment 5, 145–152.
Aicher, R. J. , Larios, L. & Suding, K. N. (2011). Seed supply, recruitment, and assembly: quantifying relative seed and establishment limitation in a plant community context. American Naturalist 178, 464–477. PubMed
Alcántara, J. M. , Garrido, J. L. , Montesinos‐Navarro, A. , Rey, P. J. , Valiente‐Banuet, A. & Verdú, M. (2019. a). Unifying facilitation and recruitment networks. Journal of Vegetation Science 30, 1239–1249.
Alcántara, J. M. , Garrido, J. L. & Rey, P. J. (2019. b). Plant species abundance and phylogeny explain the structure of recruitment networks. New Phytologist 223, 366–376. PubMed
Alcántara, J. M. , Pulgar, M. & Rey, P. J. (2017). Dissecting the role of transitivity and intransitivity on coexistence in competing species networks. Theoretical Ecology 10, 207–215.
Alcántara, J. M. , Pulgar, M. , Trøjelsgaard, K. , Garrido, J. L. & Rey, P. J. (2018). Stochastic and deterministic effects on interactions between canopy and recruiting species in forest communities. Functional Ecology 32, 2264–2274.
Alcántara, J. M. & Rey, P. J. (2012). Linking topological structure and dynamics in ecological networks. American Naturalist 180, 186–199. PubMed
Alcántara, J. M. , Rey, P. J. & Manzaneda, A. J. (2015). A model of plant community dynamics based on replacement networks. Journal of Vegetation Science 26, 524–537.
Allesina, S. & Levine, J. M. (2011). A competitive network theory of species diversity. Proceedings of the National Academy of Sciences 108, 5638–5642. PubMed PMC
Allesina, S. & Tang, S. (2012). Stability criteria for complex ecosystems. Nature 483, 205–208. PubMed
Almeida‐Neto, M. , Guimaraes, P. , Guimaraes, P. R. , Loyola, R. D. & Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239.
* Armas, C. , Ordiales, R. & Pugnaire, F. I. (2004). Measuring plant interactions: a new comparative index. Ecology 85, 2682–2686.
Armesto, J. J. & Pickett, S. T. A. (1986). Removal experiments to test mechanisms of plant succession in oldfields. Vegetatio 66, 85–93.
Bairey, E. , Kelsic, E. D. & Kishony, R. (2016). High–order species interactions shape ecosystem diversity. Nature Communications 7, 12285. PubMed PMC
Barabás, G. , Michalska‐Smith, J. & Allesina, S. (2016). The effect of intra‐and interspecific competition on coexistence in multispecies communities. American Naturalist 188, E1–E12. PubMed
Barbosa, P. , Hines, J. , Kaplan, I. , Martinson, H. , Szczepaniec, A. & Szendrei, Z. (2009). Associational resistance and associational susceptibility: having right or wrong neighbors. Annual Review of Ecology, Evolution & Systematics 40, 1–20.
Bascompte, J. & Jordano, P. (2014). Mutualistic networks. In Monographs in Population Biology (Volume 53, eds Levin S. A. and Horn H. S.). Princeton University Press, Princeton, NJ.
Bastolla, U. , Fortuna, M. , Pascual‐García, A. , Ferrera, A. , Luque, B. & Bascompte, J. (2009). The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020. PubMed
Baudena, M. , Santana, V. M. , Baeza, M. J. , Bautista, S. , Eppinga, M. B. , Hemerik, L. , García Mayor, A. , Rodríguez, F. , Valdecantos, A. , Vallejo, V. R. , Vasques, A. & Rietkerk, M. (2020). Increased aridity drives post‐fire recovery of Mediterranean forests towards open shrublands. New Phytologist 225, 1500–1515. PubMed PMC
Bazzaz, F. A. (1990). Plant‐plant interactions in successional environments. In Perspectives on Plant Competition (eds Grace J. B. and Tilman D.), pp. 239–263. Academic Press, San Diego, CA.
Benzing, D. H. (2008). Vascular Epiphytes: General Biology and Related Biota. Cambridge University Press, Cambridge, UK.
Berdugo, M. , Vidiella, B. , Solé, R. V. & Maestre, F. T. (2022). Ecological mechanisms underlying aridity thresholds in global drylands. Functional Ecology 36, 4–23.
Bertness, M. D. & Callaway, R. (1994). Positive interactions in communities. Trends in Ecology & Evolution 9, 191–193. PubMed
Bimler, M. D. , Stouffer, D. B. , Martyn, T. E. & Mayfield, M. M. (2024). Plant interaction networks reveal the limits of our understanding of diversity maintenance. Ecology Letters 27, e14376. PubMed
Blüthgen, N. , Fründ, J. , Vázquez, D. P. & Menzel, F. (2008). What do interaction network metrics tell us about specialization and biological traits. Ecology 89, 3387–3399. PubMed
Blüthgen, N. & Staab, M. (2024). A critical evaluation of network approaches for studying species interactions. Annual Review of Ecology, Evolution, and Systematics 55, 65–88.
Brimacombe, C. , Bodner, K. , Michalska‐Smith, M. , Gravel, D. & Fortin, M. J. (2022). No strong evidence that modularity, specialization or nestedness are linked to seasonal climatic variability in bipartite networks. Global Ecology and Biogeography 31, 2510–2523.
Brinkman, P. E. , Van der Putten, W. H. , Bakker, E. J. & Verhoeven, K. J. (2010). Plant–soil feedback: experimental approaches, statistical analyses and ecological interpretations. Journal of Ecology 98, 1063–1073.
Brooker, R. W. , Callaway, R. M. , Cavieres, L. A. , Kikvidze, Z. , Lortie, C. J. , Michalet, R. , Pugnaire, F. I. , Valiente‐Banuet, A. & Whitham, T. G. (2009). Don't diss integration: a comment on Ricklefs's disintegrating communities. American Naturalist 174, 919–927. PubMed
Brooks, M. , Bolker, B. , Kristensen, K. , Maechler, M. , Magnusson, A. , McGillycuddy, M. , Skaug, H. , Nielsen, A. , Berg, C. , van Bentham, K. , Sadat, N. , Lüdecke, D. , Lenth, R. , O'Brien, J. , Geyer, C. J. , et al. (2017). glmmTMB balances speed and flexibility among packages for zero‐inflated generalized linear mixed modeling. The R Journal 9, 378–400.
Bruno, M. , Saracco, F. , Garlaschelli, D. , Tessone, C. J. & Caldarelli, G. (2020). The ambiguity of nestedness under soft and hard constraints. Scientific Reports 10, 19903. PubMed PMC
Burgos, E. , Ceva, H. , Perazzo, R. P. , Devoto, M. , Medan, D. , Zimmermann, M. & Delbue, A. M. (2007). Why nestedness in mutualistic networks? Journal of Theoretical Biology 249, 307–313. PubMed
Butterfield, B. J. & Briggs, J. M. (2011). Regeneration niche differentiates functional strategies of desert woody plant species. Oecologia 165, 477–487. PubMed PMC
Calatayud, J. , Andivia, E. , Escudero, A. , Melián, C. J. , Bernardo‐Madrid, R. , Stoffel, M. , Aponte, C. , Medina, N. G. , Molina‐Venegas, R. , Arnan, X. , Rosvall, M. , Neuman, M. , Noriega, J. A. , Alves‐Martins, F. , Draper, I. , et al. (2020). Positive associations among rare species and their persistence in ecological assemblages. Nature Ecology & Evolution 4, 40–45. PubMed
Carlo, T. A. (2005). Interspecific neighbors change seed dispersal pattern of an avian‐dispersed plant. Ecology 86, 2440–2449.
Chao, A. , Gotelli, N. J. , Hsieh, T. C. , Sander, E. L. , Ma, K. H. , Colwell, R. K. & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84, 45–67.
Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31, 343–366.
Clauset, A. , Shalizi, C. R. & Newman, M. E. (2009). Power‐law distributions in empirical data. SIAM Review 51, 661–703.
Connell, J. H. (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In Dynamics of Populations (eds den Boer P. J. and Gradwell G. R.), pp. 298–310. Centre for Agricultural Publications and Documentation, Wageningen, Netherlands.
Connell, J. H. & Slatyer, R. O. (1977). Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist 111, 1119–1144.
Csárdi, G. & Nepusz, T. (2006). The igraph software package for complex network research. Complex Systems 1695, 1–9.
Daniel, C. , Allan, E. , Saiz, H. & Godoy, O. (2024). Fast–slow traits predict competition network structure and its response to resources and enemies. Ecology Letters 27, e14425. PubMed
Delalandre, L. & Montesinos‐Navarro, A. (2018). Can co‐occurrence networks predict plant‐plant interactions in a semi‐arid gypsum community? Perspectives in Plant Ecology, Evolution & Systematics 31, 36–43.
Delmas, E. , Besson, M. , Brice, M. H. , Burkle, L. A. , Dalla Riva, G. V. , Fortin, M. J. , Gravel, D. , Guimarães, P. R. Jr. , Hembry, D. H. , Newman, E. A. , Olesen, J. M. , Pires, M. M. , Yeakel, J. D. & Poisot, T. (2019). Analysing ecological networks of species interactions. Biological Reviews 94, 16–36. PubMed
Díaz‐Sierra, R. , Verwijmeren, M. , Rietkerk, M. , de Dios, V. R. & Baudena, M. (2017). A new family of standardized and symmetric indices for measuring the intensity and importance of plant neighbour effects. Methods in Ecology & Evolution 8, 580–591.
* Dormann, C. F. , Gruber, B. & Fründ, J. (2008). Introducing the bipartite package: analysing ecological networks. R News 8, 8–11.
Doulcier, G. & Stouffer, D. (2023). Rnetcarto: fast network modularity and roles computation by simulated annealing. R package version 0.2.6.
Egerton, F. N. (2015). History of ecological sciences, part 54: succession, community, and continuum. Bulletin of the Ecological Society of America 96, 426–474.
Eppinga, M. B. , Baudena, M. , Johnson, D. J. , Jiang, J. , Mack, K. M. , Strand, A. E. & Bever, J. D. (2018). Frequency‐dependent feedback constrains plant community coexistence. Nature Ecology & Evolution 2, 1403–1407. PubMed
Fajardo, A. & McIntire, E. J. (2011). Under strong niche overlap conspecifics do not compete but help each other to survive: facilitation at the intraspecific level. Journal of Ecology 99, 642–650.
Feng, W. & Takemoto, K. (2014). Heterogeneity in ecological mutualistic networks dominantly determines community stability. Scientific Reports 4, 5912. PubMed PMC
Filazzola, A. & Lortie, C. J. (2014). A systematic review and conceptual framework for the mechanistic pathways of nurse plants. Global Ecology and Biogeography 23, 1335–1345.
Fodor, E. , Haruta, O. & Dorog, S. (2018). Nurse plants and the regeneration niche of tree seedlings in wood‐pastures from Western and North‐Western Romania. Reforesta 6, 41–59.
Fortuna, M. A. , Stouffer, D. B. , Olesen, J. M. , Jordano, P. , Mouillot, D. , Krasnov, B. R. , Poulin, R. & Bascompte, J. (2010). Nestedness versus modularity in ecological networks: two sides of the same coin? Journal of Animal Ecology 79, 811–817. PubMed
Freckleton, R. P. & Watkinson, A. R. (2001). Nonmanipulative determination of plant community dynamics. Trends in Ecology & Evolution 16, 301–307. PubMed
Fricke, E. C. , Tewksbury, J. J. & Rogers, H. S. (2014). Multiple natural enemies cause distance‐dependent mortality at the seed‐to‐seedling transition. Ecology Letters 17, 593–598. PubMed
Garrido, J. L. , Alcántara, J. M. , López‐García, Á. , Ozuna, C. V. , Perea, A. J. , Prieto, J. , Rincón, A. & Azcón‐Aguilar, C. (2023). The structure and ecological function of the interactions between plants and arbuscular mycorrhizal fungi through multilayer networks. Functional Ecology 37, 2217–2230.
Gilarranz, L. J. , Rayfield, B. , Liñán‐Cembrano, G. , Bascompte, J. & Gonzalez, A. (2017). Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357, 199–201. PubMed
Godoy, O. , Stouffer, D. B. , Kraft, N. J. & Levine, J. M. (2017). Intransitivity is infrequent and fails to promote annual plant coexistence without pairwise niche differences. Ecology 98, 1193–1200. PubMed
Gómez‐Aparicio, L. (2008). Spatial patterns of recruitment in Mediterranean plant species: linking the fate of seeds, seedlings and saplings in heterogeneous landscapes at different scales. Journal of Ecology 96, 1128–1140.
Gómez‐Aparicio, L. (2009). The role of plant interactions in the restoration of degraded ecosystems: a meta‐analysis across life‐forms and ecosystems. Journal of Ecology 97, 1202–1214.
Gómez‐Aparicio, L. , Zamora, R. , Gómez, J. M. , Hódar, J. A. , Castro, J. & Baraza, E. (2004). Applying plant facilitation to forest restoration: a meta‐analysis of the use of shrubs as nurse plants. Ecological Applications 14, 1128–1138.
Grubb, P. J. (1977). The maintenance of species richness in plant communities: the importance of the regeneration niche. Biological Reviews 52, 107–145.
Guillemot, J. , Martin‐StPaul, N. K. , Bulascoschi, L. , Poorter, L. , Morin, X. , Pinho, B. X. , le Maire, G. , Bittencourt, P. R. L. , Oliveira, R. S. , Bongers, F. , Brouwer, R. , Pereira, L. , Gonzalez Melo, G. A. , Boonman, C. C. F. , Brown, K. A. , et al. (2022). Small and slow is safe: on the drought tolerance of tropical tree species. Global Change Biology 28, 2622–2638. PubMed
Gulías, J. , Traveset, A. , Riera, N. & Mus, M. (2004). Critical stages in the recruitment process of Rhamnus alaternus L. Annals of Botany 93, 723–731. PubMed PMC
* Hadfield, J. D. (2010). MCMC methods for multi‐response generalized linear mixed models: the MCMCglmm R package. Journal of Statistical Software 33, 1–22. PubMed PMC
Hanski, I. & Ovaskainen, O. (2002). Extinction debt at extinction threshold. Conservation Biology 16, 666–673.
Hartig, F. (2022). DHARMa: residual diagnostics for hierarchical (multi‐level/mixed) regression models. R package version 0.4.6.
He, Q. , Bertness, M. D. & Altieri, A. H. (2013). Global shifts towards positive species interactions with increasing environmental stress. Ecology Letters 16, 695–706. PubMed
* Hedges, L. V. , Gurevitch, J. & Curtis, P. S. (1999). The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156.
Horn, H. S. (1975). Markovian properties of forest succession. In Ecology and Evolution of Communities (eds Diamond J. M. and Cody M. L.), pp. 187–204. Harvard University Press, Cambridge, MA.
Hsieh, T. C. , Ma, K. H. & Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods in Ecology and Evolution 7, 1451–1456.
Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ.
Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests. American Naturalist 104, 501–528.
Karp, R. M. (1990). The transitive closure of a random digraph. Random Structures & Algorithms 1, 73–93.
Kent, M. (2012). Vegetation Description and Data Analysis: A Practical Approach, 2nd Edition. Chichester, UK: Wiley‐Blackwell.
* Kikvidze, Z. & Brooker, R. W. (2019). Quantifying plant interactions: independent reference is critical for standardising the importance indices. Journal of Vegetation Science 30, 397–401.
Kinlock, N. L. (2019). A meta‐analysis of plant interaction networks reveals competitive hierarchies as well as facilitation and intransitivity. American Naturalist 194, 640–653. PubMed
Kinlock, N. L. (2021). Uncovering structural features that underlie coexistence in an invaded woody plant community with interaction networks at multiple life stages. Journal of Ecology 109, 384–398.
Klironomos, J. N. (2002). Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417, 67–70. PubMed
Kuussaari, M. , Bommarco, R. , Heikkinen, R. K. , Helm, A. , Krauss, J. , Lindborg, R. , Ökinger, E. , Pärtel, M. , Pino, J. , Rodá, F. , Stefanescu, C. , Teder, T. , Zobel, M. & Steffan‐Dewenter, I. (2009). Extinction debt: a challenge for biodiversity conservation. Trends in Ecology & Evolution 24, 564–571. PubMed
Laird, R. A. & Schamp, B. S. (2009). Species coexistence, intransitivity, and topological variation in competitive tournaments. Journal of Theoretical Biology 256, 90–95. PubMed
Le Roux, P. C. , Shaw, J. D. & Chown, S. L. (2013). Ontogenetic shifts in plant interactions vary with environmental severity and affect population structure. New Phytologist 200, 241–250. PubMed
Ledo, A. , Condés, S. & Montes, F. (2011). Intertype mark correlation function: a new tool for the analysis of species interactions. Ecological Modelling 222, 580–587.
Liancourt, P. & Dolezal, J. (2021). Community‐scale effects and strain: facilitation beyond conspicuous patterns. Journal of Ecology 109, 19–25.
López, R. P. , Squeo, F. A. , Armas, C. , Kelt, D. A. & Gutiérrez, J. R. (2016). Enhanced facilitation at the extreme end of the aridity gradient in the Atacama Desert: a community‐level approach. Ecology 97, 1593–1604. PubMed
Lortie, C. J. , Brooker, R. W. , Choler, P. , Kikvidze, Z. , Michalet, R. , Pugnaire, F. I. & Callaway, R. M. (2004). Rethinking plant community theory. Oikos 107, 433–438.
Losapio, G. , Fortuna, M. A. , Bascompte, J. , Schmid, B. , Michalet, R. , Neumeyer, R. , Castro, L. , Cerretti, P. , Germann, C. , Haenni, J. P. , Klopfstein, S. , Ortiz‐Sánchez, F. J. , Pont, A. C. , Rousse, P. , Schmid, J. , et al. (2019. a). Plant interactions shape pollination networks via nonadditive effects. Ecology 100, e02619. PubMed
Losapio, G. , Montesinos‐Navarro, A. & Saiz, H. (2019. b). Perspectives for ecological networks in plant ecology. Plant Ecology & Diversity 12, 87–102.
Losapio, G. , Pugnaire, F. I. , O'Brien, M. J. & Schöb, C. (2018). Plant life history stage and nurse age change the development of ecological networks in an arid ecosystem. Oikos 127, 1390–1397.
Losapio, G. , Schöb, C. , Staniczenko, P. P. & Bascompte, J. (2021). Network motifs involving both competition and facilitation predict biodiversity in alpine plant communities. Proceedings of the National Academy of Sciences 118, e2005759118. PubMed PMC
* Lüdecke, D. (2018). ggeffects: tidy data frames of marginal effects from regression models. Journal of Open Source Software 3(26), 772.
* Lüdecke, D. , Ben‐Shachar, M. S. , Patil, I. , Waggoner, P. & Makowski, D. (2021). Performance: an R package for assessment, comparison and testing of statistical models. Journal of Open Source Software 6, 3139.
Luo, Y. , He, F. & Yu, S. (2013). Recruitment limitation of dominant tree species with varying seed masses in a subtropical evergreen broad‐leaved forest. Community Ecology 14, 189–195.
Maestre, F. T. , Callaway, R. M. , Valladares, F. & Lortie, C. J. (2009). Refining the stress‐gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology 97, 199–205.
Marcilio‐Silva, V. , Cavalin, P. O. , Varassin, I. G. , Oliveira, R. A. , de Souza, J. M. , Muschner, V. C. & Marques, M. C. (2015). Nurse abundance determines plant facilitation networks of subtropical forest–grassland ecotone. Austral Ecology 40, 898–908.
Mariani, M. S. , Ren, Z. M. , Bascompte, J. & Tessone, C. J. (2019). Nestedness in complex networks: observation, emergence, and implications. Physics Reports 813, 1–90.
* Markham, J. H. & Chanway, C. P. (1996). Measuring plant neighbour effects. Functional Ecology 10, 548–549.
May, R. M. (1973). Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton, NJ.
May, R. M. & Leonard, W. J. (1975). Nonlinear aspects of competition between three species. SIAM Journal on Applied Mathematics 29, 243–253.
Michalet, R. (2007). Highlighting the multiple drivers of change in interactions along stress gradients. New Phytologist 173, 3–6. PubMed
Michalet, R. , Le Bagousse‐Pinguet, Y. , Maalouf, J. P. & Lortie, C. J. (2014). Two alternatives to the stress‐gradient hypothesis at the edge of life: the collapse of facilitation and the switch from facilitation to competition. Journal of Vegetation Science 25, 609–613.
Miller, Z. R. & Allesina, S. (2021). Metapopulations with habitat modification. Proceedings of the National Academy of Sciences 118, e2109896118. PubMed PMC
Mingo, A. (2014). Integrating importance and intensity: a novel approach to normalize measurement of neighbour effects. Community Ecology 15, 65–76.
Miriti, M. N. (2006). Ontogenetic shift from facilitation to competition in a desert shrub. Journal of Ecology 94, 973–979.
Montesinos‐Navarro, A. , Segarra‐Moragues, J. G. , Valiente‐Banuet, A. & Verdú, M. (2012). The network structure of plant–arbuscular mycorrhizal fungi. New Phytologist 194, 536–547. PubMed
Montesinos‐Navarro, A. , Valiente‐Banuet, A. & Verdú, M. (2019). Plant facilitation through mycorrhizal symbiosis is stronger between distantly related plant species. New Phytologist 224, 928–935. PubMed
Myster, R. W. (2012). Plants replacing plants: the future of community modeling and research. Botanical Review 78, 2–9.
Naranjo, C. , Iriondo, J. M. , Riofrio, M. L. & Lara‐Romero, C. (2019). Evaluating the structure of commensalistic epiphyte–phorophyte networks: a comparative perspective of biotic interactions. AoB Plants 11, plz011. PubMed PMC
Navarro‐Cano, J. A. , Goberna, M. , Valiente‐Banuet, A. & Verdu, M. (2016). Same nurse but different time: temporal divergence in the facilitation of plant lineages with contrasted functional syndromes. Functional Ecology 30, 1854–1861.
Navarro‐Cano, J. A. , Goberna, M. , Valiente‐Banuet, A. & Verdú, M. (2021. a). Phenotypic structure of plant facilitation networks. Ecology Letters 24, 509–519. PubMed
Navarro‐Cano, J. A. , Goberna, M. & Verdú, M. (2021. b). Facilitation enhances ecosystem function with non‐random species gains. Oikos 130, 2093–2099.
Navarro‐Cano, J. A. , Horner, B. , Goberna, M. & Verdu, M. (2019). Additive effects of nurse and facilitated plants on ecosystem functions. Journal of Ecology 107, 2587–2597.
Navarro‐Cano, J. A. , Verdú, M. & Goberna, M. (2018). Trait‐based selection of nurse plants to restore ecosystem functions in mine tailings. Journal of Applied Ecology 55, 1195–1206.
Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences 103, 8577–8582. PubMed PMC
Novak, M. , Yeakel, J. D. , Noble, A. E. , Doak, D. F. , Emmerson, M. , Estes, J. A. , Jacob, U. , Tinker, M. T. & Wootton, J. T. (2016). Characterizing species interactions to understand press perturbations: what is the community matrix? Annual Review of Ecology, Evolution & Systematics 47, 409–432.
Olesen, J. M. , Bascompte, J. , Dupont, Y. L. & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences 104, 19891–19896. PubMed PMC
Olsen, S. L. , Töpper, J. P. , Skarpaas, O. , Vandvik, V. & Klanderud, K. (2016). From facilitation to competition: temperature‐driven shift in dominant plant interactions affects population dynamics in seminatural grasslands. Global Change Biology 22, 1915–1926. PubMed
Olson, D. M. , Dinerstein, E. , Wikramanayake, E. D. , Burgess, N. D. , Powell, G. V. , Underwood, E. C. , D'Amico, J. A. , Itoua, I. , Strand, H. E. , Morrison, J. C. , Loucks, C. J. , Allnutt, T. F. , Ricketts, T. H. , Kura, Y. , Lamoreux, J. F. , et al. (2001). Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938.
Pacala, S. W. , Canham, C. D. , Saponara, J. , Silander, J. A. Jr. , Kobe, R. K. & Ribbens, E. (1998). Forest models defined by field measurements: estimation, error analysis and dynamics. Ecological Monographs 66, 1–43.
Pajares‐Murgó, M. , Garrido, J. L. , Perea, A. J. , López‐García, Á. , Bastida, J. M. & Alcántara, J. M. (2024. a). Mutualistic and antagonistic phyllosphere fungi contribute to plant recruitment in natural communities. Journal of Ecology:1–12.
Pajares‐Murgó, M. , Garrido, J. L. , Perea, A. J. , López‐García, A. , Bastida, J. M. , Prieto‐Rubio, J. , Lendínez, S. , Azcón‐Aguilar, C. & Alcántara, J. M. (2024. b). Intransitivity in plant‐soil feedbacks is rare but is associated with multispecies coexistence. Ecology Letters 14, e0211572. PubMed
Pascual, M. & Dunne, J. A. (eds) (2006). Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford University Press, New York, NY.
Paterno, G. B. , Siqueira‐Filho, J. A. & Ganade, G. (2016). Species‐specific facilitation, ontogenetic shifts and consequences for plant community succession. Journal of Vegetation Science 27, 606–615.
Pausas, J. G. & Bond, W. J. (2020). Alternative biome states in terrestrial ecosystems. Trends in Plant Science 25, 250–263. PubMed
Payrató‐Borrás, C. , Hernández, L. & Moreno, Y. (2019). Breaking the spell of nestedness: the entropic origin of nestedness in mutualistic systems. Physical Review X 9, 31024.
Perea, A. J. , Garrido, J. L. & Alcántara, J. M. (2021. a). Plant functional traits involved in the assembly of canopy–recruit interactions. Journal of Vegetation Science 32, e12991.
Perea, A. J. , Garrido, J. L. , Fedriani, J. M. , Rey, P. J. & Alcántara, J. M. (2020). Pathogen life‐cycle leaves footprint on the spatial distribution of recruitment of their host plants. Fungal Ecology 47, 100974.
Perea, A. J. , Merelas Meijide, B. , Alguacil, M. D. M. , Prieto‐Rubio, J. , Azcón‐Aguilar, C. , Alcántara, J. M. , Garrido, J. L. & López‐García, Á. (2023). Counteracting effects of soil biota on emergence and growth of herbaceous plants. Plant and Soil 490, 279–290.
Perea, A. J. , Wiegand, T. , Garrido, J. L. , Rey, P. J. & Alcántara, J. M. (2021. b). Legacy effects of seed dispersal mechanisms shape the spatial interaction network of plant species in Mediterranean forests. Journal of Ecology 109, 3670–3684.
Pérez‐Navarro, M. A. , Lloret, F. , Molina‐Venegas, R. , Alcántara, J. M. & Verdú, M. (2024). Plant canopies promote climatic disequilibrium in Mediterranean recruit communities. Ecology Letters 27, e14391. PubMed
Pilosof, S. , Porter, M. A. , Pascual, M. & Kéfi, S. (2017). The multilayer nature of ecological networks. Nature Ecology & Evolution 1, 101. PubMed
Poisot, T. & Gravel, D. (2014). When is an ecological network complex? Connectance drives degree distribution and emerging network properties. PeerJ 2, e251. PubMed PMC
Poisot, T. , Stouffer, D. B. & Kéfi, S. (2016). Describe, understand and predict: why do we need networks in ecology? Functional Ecology 30, 1878–1882.
Pulgar, M. , Alcántara, J. M. & Rey, P. J. (2017). Effects of sampling effort on estimates of the structure of replacement networks. Journal of Vegetation Science 28, 445–457.
Quintero, E. , Arroyo, J. M. , Dirzo, R. , Jordano, P. & Rodríguez‐Sánchez, F. (2024). Lasting effects of avian‐frugivore interactions on seed dispersal and seedling establishment. Journal of Ecology 112, 656–672.
Rey, P. J. & Alcántara, J. M. (2000). Recruitment dynamics of a fleshy‐fruited plant (Olea europaea): connecting patterns of seed dispersal to seedling establishment. Journal of Ecology 88, 622–633.
Rey, P. J. , Alcántara, J. M. , Manzaneda, A. J. & Sánchez‐Lafuente, A. M. (2016). Facilitation contributes to Mediterranean woody plant diversity but does not shape the diversity–productivity relationship along aridity gradients. New Phytologist 211, 464–476. PubMed
Rey, P. J. , Ramírez, J. M. & Sánchez‐Lafuente, A. M. (2006). Seed‐vs. microsite‐limited recruitment in a myrmecochorous herb. Plant Ecology 184, 213–222.
Rezende, E. L. , Albert, E. M. , Fortuna, M. A. & Bascompte, J. (2009). Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecology Letters 12, 779–788. PubMed
Rüger, N. , Schorn, M. E. , Kambach, S. , Chazdon, R. L. , Farrior, C. E. , Meave, J. A. , Muñóz, R. , van Breugel, M. , Amissah, M. , Bongers, F. , Craven, D. , Hérault, B. , Jakovac, C. C. , Norden, N. , Poorter, L. , et al. (2023). Successional shifts in tree demographic strategies in wet and dry Neotropical forests. Global Ecology and Biogeography 32, 1002–1014.
Saiz, H. , Gómez‐Gardeñes, J. , Borda, J. P. & Maestre, F. T. (2018). The structure of plant spatial association networks is linked to plant diversity in global drylands. Journal of Ecology 106, 1443–1453. PubMed PMC
Sánchez‐Martín, R. , Verdú, M. & Montesinos‐Navarro, A. (2023). Phylogenetic and functional constraints of plant facilitation rewiring. Ecology 104, e3961. PubMed PMC
Schaffer, W. M. & Leigh, E. G. (1976). The prospective role of mathematical theory in plant ecology. Systematic Botany 1, 209–232.
* Seifan, M. , Seifan, T. , Ariza, C. & Tielbörger, K. (2010). Facilitating an importance index. Journal of Ecology 98, 356–361.
Siles, G. , Rey, P. J. , Alcántara, J. M. & Ramírez, J. M. (2008). Assessing the long‐term contribution of nurse plants to restoration of Mediterranean forests through Markovian models. Journal of Applied Ecology 45, 1790–1798.
Snyder, R. E. & Chesson, P. (2003). Local dispersal can facilitate coexistence in the presence of permanent spatial heterogeneity. Ecology Letters 6, 301–309.
Soliveres, S. , Maestre, F. T. , Berdugo, M. & Allan, E. (2015). A missing link between facilitation and plant species coexistence: nurses benefit generally rare species more than common ones. Journal of Ecology 103, 1183–1189.
Staniczenko, P. P. , Lewis, O. T. , Tylianakis, J. M. , Albrecht, M. , Coudrain, V. , Klein, A. M. & Reed‐Tsochas, F. (2017). Predicting the effect of habitat modification on networks of interacting species. Nature Communications 8, 792. PubMed PMC
Stouffer, D. B. & Bascompte, J. (2011). Compartmentalization increases food‐web persistence. Proceedings of the National Academy of Sciences 108, 3648–3652. PubMed PMC
Terborgh, J. , Zhu, K. , Álvarez‐Loayza, P. & Cornejo Valverde, F. (2014). How many seeds does it take to make a sapling? Ecology 95, 991–999. PubMed
Thébault, E. & Fontaine, C. (2010). Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856. PubMed
Thorpe, A. S. , Thelen, G. C. , Diaconu, A. & Callaway, R. M. (2009). Root exudate is allelopathic in invaded community but not in native community: field evidence for the novel weapons hypothesis. Journal of Ecology 97, 641–645.
Tilman, D. (1994). Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16.
Tüfekcioğlu, I. & Tavşanoğlu, Ç. (2022). Diversity and regeneration strategies in woody plant communities of the Mediterranean Basin: vegetation type matters. Plant Biosystems 156, 1247–1259.
Ulrich, W. & Gotelli, N. J. (2007). Null model analysis of species nestedness patterns. Ecology 88, 1824–1831. PubMed
Valiente‐Banuet, A. , Rumebe, A. V. , Verdú, M. & Callaway, R. M. (2006). Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages. Proceedings of the National Academy of Sciences 103, 16812–16817. PubMed PMC
Valiente‐Banuet, A. & Verdú, M. (2013). Plant facilitation and phylogenetics. Annual Review of Ecology, Evolution & Systematics 44, 347–366.
Van den Boogaart, K. G. & Tolosana‐Delgado, R. (2013). Analyzing Compositional Data with R, Edition (Volume 122), pp. 1–200. Springer, Berlin.
Vázquez, D. P. , Morris, W. F. & Jordano, P. (2005). Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecology Letters 8, 1088–1094.
Verdú, M. , Garrido, J. L. , Alcantara, J. M. , Montesinos‐Navarro, A. , Aguilar, S. , Aizen, M. A. , Al‐Namazi, A. A. , Alifriqui, M. , Allen, D. , Anderson‐Teixeira, K. J. , Armas, C. , Bastida, J. M. , Bellido, T. , Bonanomi, G. , Paterno, G. B. , et al. (2023). RecruitNet: a global database of plant recruitment networks. Ecology 104, e3923. PubMed PMC
Verdú, M. & Valiente‐Banuet, A. (2008). The nested assembly of plant facilitation networks prevents species extinctions. American Naturalist 172, 751–760. PubMed
Verwijmeren, M. , Smit, C. , Bautista, S. , Wassen, M. J. & Rietkerk, M. (2019). Combined grazing and drought stress alter the outcome of nurse‐beneficiary interactions in a semi‐arid ecosystem. Ecosystems 22, 1295–1307.
Wang, Y. I. , Naumann, U. , Wright, S. T. & Warton, D. I. (2012). mvabund–an R package for model‐based analysis of multivariate abundance data. Methods in Ecology and Evolution 3, 471–474.
Warton, D. I. (2011). Regularized sandwich estimators for analysis of high dimensional data using generalized estimating equations. Biometrics 67, 116–123. PubMed
* Wilson, S. D. & Keddy, P. A. (1986). Measuring diffuse competition along an environmental gradient: results from a shoreline plant community. American Naturalist 127, 862–869.
Xing, S. & Fayle, T. M. (2021). The rise of ecological network meta‐analyses: problems and prospects. Global Ecology and Conservation 30, e01805.
Yamazaki, M. , Iwamoto, S. & Seiwa, K. (2009). Distance‐ and density‐dependent seedling mortality caused by several diseases in eight tree species co‐occurring in a temperate forest. Plant Ecology 201, 181–196.
Yang, X. , Gómez‐Aparicio, L. , Lortie, C. J. , Verdú, M. , Cavieres, L. A. , Huang, Z. , Gao, R. , Liu, R. , Zhao, Y. & Cornelissen, J. H. C. (2022). Net plant interactions are highly variable and weakly dependent on climate at the global scale. Ecology Letters 25, 1580–1593. PubMed
Yin, D. , Meiners, S. J. , Ni, M. , Ye, Q. , He, F. & Cadotte, M. W. (2022). Positive interactions of native species melt invasional meltdown over long‐term plant succession. Ecology Letters 25, 2584–2596. PubMed
Zhang, R. & Tielbörger, K. (2019). Facilitation from an intraspecific perspective–stress tolerance determines facilitative effect and response in plants. New Phytologist 221, 2203–2212. PubMed
Zomer, R. J. , Xu, J. & Trabucco, A. (2022). Version 3 of the global aridity index and potential evapotranspiration database. Scientific Data 9, 409. PubMed PMC
Zotz, G. , Weigelt, P. , Kessler, M. , Kreft, H. & Taylor, A. (2021). EpiList 1.0: a global checklist of vascular epiphytes. Ecology 102, e03326. PubMed