Evolution of a multifunctional trait: shared effects of foraging ecology and thermoregulation on beak morphology, with consequences for song evolution
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31847778
PubMed Central
PMC6939928
DOI
10.1098/rspb.2019.2474
Knihovny.cz E-resources
- Keywords
- Meliphagidae, beak shape, bird song, foraging, thermoregulation, trade-off,
- MeSH
- Biological Evolution MeSH
- Phenotype * MeSH
- Body Temperature Regulation MeSH
- Vocalization, Animal MeSH
- Beak anatomy & histology MeSH
- Songbirds physiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
While morphological traits are often associated with multiple functions, it remains unclear how evolution balances the selective effects of different functions. Birds' beaks function not only in foraging but also in thermoregulating and singing, among other behaviours. Studies of beak evolution abound, however, most focus on a single function. Hence, we quantified relative contributions of different functions over an evolutionary timescale. We measured beak shape using geometric morphometrics and compared this trait with foraging behaviour, climatic variables and song characteristics in a phylogenetic comparative study of an Australasian radiation of songbirds (Meliphagidae). We found that both climate and foraging behaviour were significantly correlated with the beak shape and size. However, foraging ecology had a greater effect on shape, and climate had a nearly equal effect on size. We also found that evolutionary changes in beak morphology had significant consequences for vocal performance: species with elongate-shaped beaks sang at higher frequencies, while species with large beaks sang at a slower pace. The evolution of the avian beak exemplifies how morphological traits can be an evolutionary compromise among functions, and suggests that specialization along any functional axis may increase ecological divergence or reproductive isolation along others.
Cornell Laboratory of Ornithology Cornell University Ithaca NY USA
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Graduate School of Information Science and Technology Hokkaido University Sapporo Hokkaido Japan
See more in PubMed
Gould SJ, Lewontin RC. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B 205, 581–598. (10.1098/rspb.1979.0086) PubMed DOI
Arnold SJ. 1983. Morphology, performance, and fitness. Am. Zool. 23, 347–361. (10.1093/icb/23.2.347) DOI
Grant PR, Grant BR. 2002. Unpredictable evolution in a 30-year study of Darwin's finches. Science 296, 707–711. (10.1126/science.1070315) PubMed DOI
Bennett AF, Lenski RE. 2007. An experimental test of evolutionary trade-offs during temperature adaptation. Proc. Natl Acad. Sci. USA 104, 8649–8654. (10.1073/pnas.0702117104) PubMed DOI PMC
Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, Dekel E, Kavanagh K, Alon U. 2012. Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space. Science 336, 1157–1160. (10.1126/science.1217405) PubMed DOI
Boag PT, Grant PR. 1981. Intense natural selection in a population of Darwin's finches (Geospizinae) in the Galápagos. Science 214, 82–85. (10.1126/science.214.4516.82) PubMed DOI
Cattau CE, Fletcher RJ, Kimball RT, Miller CW, Kitchens WM. 2018. Rapid morphological change of a top predator with the invasion of a novel prey. Nat. Ecol. Evol. 2, 108–115. (10.1038/s41559-017-0378-1) PubMed DOI
Collias EC, Collias NE. 1964. The development of nest-building behavior in a weaverbird. Auk 81, 42–52. (10.2307/4082609) DOI
Clayton DH, Moyer BR, Bush SE, Jones TG, Gardiner DW, Rhodes BB, Goller F. 2005. Adaptive significance of avian beak morphology for ectoparasite control . Proc. R. Soc. Lond. B 272, 811–817. (10.1098/rspb.2004.3036) PubMed DOI PMC
Podos J. 2001. Correlated evolution of morphology and vocal signal structure in Darwin’ s finches. Nature 409, 185–188. (10.1038/35051570) PubMed DOI
Greenberg R, Danner RM. 2012. The influence of the California marine layer on bill size in a generalist songbird. Evolution 66, 3825–3835. (10.1111/j.1558-5646.2012.01726.x) PubMed DOI
Tattersall GJ, Arnaout B, Symonds MRE. 2017. The evolution of the avian bill as a thermoregulatory organ . Biol. Rev. 92, 1630–1656. (10.1111/brv.12299) PubMed DOI
Herrel A, Podos J, Huber SK, Hendry AP. 2005. Bite performance and morphology in a population of Darwin's finches: implications for the evolution of beak shape. Funct. Ecol. 19, 43–48. (10.1111/j.0269-8463.2005.00923.x) DOI
Ballentine B. 2006. Morphological adaptation influences the evolution of a mating signal. Evolution 60, 1936–1944. (10.1111/j.0014-3820.2006.tb00536.x) PubMed DOI
Danner RM, Greenberg R. 2015. A critical season approach to Allen's rule: bill size declines with winter temperature in a cold temperate environment. J. Biogeogr. 42, 114–120. (10.1111/jbi.12389) DOI
Derryberry EP, Seddon N, Claramunt S, Tobias JA, Baker A, Aleixo A, Brumfield RT. 2012. Correlated evolution of beak morphology and song in the neotropical woodcreeper radiation. Evolution 66, 2784–2797. (10.1111/j.1558-5646.2012.01642.x) PubMed DOI
Friedman NR, Harmáčková L, Economo EP, Remeš V. 2017. Smaller beaks for colder winters: thermoregulation drives beak size evolution in Australasian songbirds. Evolution 71, 2120–2129. (10.1111/evo.13274) PubMed DOI
Olsen AM. 2017. Feeding ecology is the primary driver of beak shape diversification in waterfowl . Funct. Ecol. 31, 1985–1995. (10.1111/1365-2435.12890) DOI
Schluter D, Smith JNM. 1984. Natural selection on beak and body size in the song sparrow. Evolution 48, 1747–1763. (10.2307/2408803) PubMed DOI
Ballentine B, Gkoo KW, Greenberg R. 2013. Mechanisms of song divergence between swamp sparrow subspecies. Behaviour 150, 1165–1181. (10.1163/1568539X-00003093) DOI
Klingenberg CP. 2008. Morphological integration and developmental modularity. Annu. Rev. Ecol. Evol. Syst. 39, 115–132. (10.1146/annurev.ecolsys.37.091305.110054) DOI
Bright JA, Marugán-Lobón J, Cobb SN, Rayfield EJ. 2016. The shapes of bird beaks are highly controlled by nondietary factors. Proc. Natl Acad. Sci. USA 113, 5352–5357. (10.1073/pnas.1602683113) PubMed DOI PMC
Greenberg R, Cadena V, Danner RM, Tattersall GJ. 2012. Heat loss may explain bill size differences between birds occupying different habitats. PLoS ONE 7, e40933 (10.1371/journal.pone.0040933) PubMed DOI PMC
Olson EC, Miller RL. 1958. Morphological integration. Chicago, IL: University of Chicago Press.
Smith JM, Burian R, Kauffman S, Alberch P, Campbell J, Goodwin B, Lande R, Raup D, Wolpert L. 1985. Developmental constraints and evolution: a perspective from the Mountain Lake conference on development and evolution. Q. Rev. Biol. 60, 265–287. (10.1086/414425) DOI
Navalón G, Bright JA, Marugán-Lobón J, Rayfield EJ. 2019. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution 73, 422–435. (10.1111/evo.13655) PubMed DOI
Futuyma DJ, Moreno G. 1988. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233. (10.1146/annurev.ecolsys.19.1.207) DOI
Meyer A. 1989. Cost of morphological specialization: feeding performance of the two morphs in the trophically polymorphic cichlid fish, Cichlasoma citrinellum. Oecologia 80, 431–436. (10.1007/BF00379047) PubMed DOI
Schondube JE, Del Rio CM. 2003. The flowerpiercers' hook: an experimental test of an evolutionary trade-off. Proc. R. Soc. Lond. B 270, 195–198. (10.1098/rspb.2002.2231) PubMed DOI PMC
Derryberry EP, Seddon N, Derryberry GE, Claramunt S, Seeholzer GF, Brumfield RT, Tobias JA. 2018. Ecological drivers of song evolution in birds: disentangling the effects of habitat and morphology. Ecol. Evol. 8, 1890–1905. (10.1002/ece3.3760) PubMed DOI PMC
Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P. 2011. Magic traits in speciation: ‘magic’ but not rare? Trends Ecol. Evol. 26, 389–397. (10.1016/j.tree.2011.04.005) PubMed DOI
Fleischer RC, James HF, Olson SL. 2008. Convergent evolution of Hawaiian and Australo-Pacific honeyeaters from distant songbird ancestors. Curr. Biol. 18, 1927–1931. (10.1016/j.cub.2008.10.051) PubMed DOI
Miller ET, Zanne AE, Ricklefs RE. 2013. Niche conservatism constrains Australian honeyeater assemblages in stressful environments. Ecol. Lett. 16, 1186–1194. (10.1111/ele.12156) PubMed DOI
Andersen MJ, Naikatini A, Moyle RG. 2014. A molecular phylogeny of Pacific honeyeaters (Aves: Meliphagidae) reveals extensive paraphyly and an isolated Polynesian radiation. Mol. Phylogenet. Evol. 71, 308–315. (10.1016/j.ympev.2013.11.014) PubMed DOI
Joseph L, Toon A, Nyári AS, Longmore NW, Rowe KMC, Haryoko T, Trueman J, Gardner JL. 2014. A new synthesis of the molecular systematics and biogeography of honeyeaters (Passeriformes: Meliphagidae) highlights biogeographical and ecological complexity of a spectacular avian radiation. Zool. Scr. 43, 235–248. (10.1111/zsc.12049) DOI
Byrne M, et al. 2008. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol. Ecol. 17, 4398–4417. (10.1111/j.1365-294X.2008.03899.x) PubMed DOI
Byrne M, et al. 2011. Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. J. Biogeogr. 38, 1635–1656. (10.1111/j.1365-2699.2011.02535.x) DOI
Wooller RD, Richardson KC, Pagendham CM. 1988. The digestion of pollen by some Australian birds. Aust. J. Zool. 36, 357–362. (10.1071/ZO9880357) DOI
Allen JA. 1877. The influence of physical conditions in the genesis of species. Radic. Rev. 1, 108–140. (10.1111/j.1420-9101.2010.02141.x) DOI
Gardner JL, Symonds MRE, Joseph L, Ikin K, Stein J, Kruuk LEB. 2016. Spatial variation in avian bill size is associated with humidity in summer among Australian passerines. Clim. Chang. Responses 3, 11 (10.1186/s40665-016-0026-z) DOI
Miller ET, Wagner SK, Harmon LJ, Ricklefs RE. 2017. Radiating despite a lack of character: ecological divergence among closely related, morphologically similar honeyeaters (Aves: Meliphagidae) co-occurring in arid Australian environments. Am. Nat. 189, E14–E30. (10.1086/690008) PubMed DOI
Adams DC, Otárola-Castillo E. 2013. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399. (10.1111/2041-210X.12035) DOI
Zelditch ML, Swiderski DL, Sheets HD. 2012. Geometric morphometrics for biologists: a primer, 2nd edn London, UK: Academic Press.
Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223. (10.1111/j.2041-210X.2011.00169.x) DOI
Price JJ, Friedman NR, Omland KE. 2007. Song and plumage evolution in the New World orioles (Icterus) show similar lability and convergence in patterns. Evolution 61, 850–863. (10.1111/j.1558-5646.2007.00082.x) PubMed DOI
Tobias JA, Cornwallis CK, Derryberry EP, Claramunt S, Brumfield RT, Seddon N. 2014. Species coexistence and the dynamics of phenotypic evolution in adaptive radiation. Nature 506, 359–363. (10.1038/nature12874) PubMed DOI
del Hoyo J, Elliott A, Christie DA. 2008. Handbook of the birds of the world. Volume 13: penduline-tits to shrikes. Barcelona, Spain: Lynx Edicions.
Nowicki S, Westneat M. 1992. Birdsong: motor function and the evolution of communication. Semin. Neurosci. 4, 385–390. (10.1016/1044-5765(92)90046-5) DOI
Ryan MJ, Brenowitz EA. 1985. The role of body size, phylogeny, and ambient noise in the evolution of bird song. Am. Nat. 126, 87–100. (10.1086/284398) DOI
Beranek LL. 1954. Acoustics. New York, NY: McGraw-Hill.
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. (10.1002/joc.1276) DOI
Hijmans RJ. 2015. raster: geographic data analysis and modeling. R package version 2.4-20. See https://cran.r-project.org/package=raster.
BirdLife International, NatureServe. 2011. Bird species distribution maps of the world. Cambridge, UK; Arlington, VA: BirdLife International; NatureServe.
Marki PZ, Jønsson KA, Irestedt M, Nguyen JMT, Rahbek C, Fjeldså J. 2017. Supermatrix phylogeny and biogeography of the Australasian Meliphagides radiation (Aves: Passeriformes). Mol. Phylogenet. Evol. 107, 516–529. (10.1016/j.ympev.2016.12.021) PubMed DOI
Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (10.1186/1471-2148-7-214) PubMed DOI PMC
Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W.. 2014. EltonTraits 1.0: species-level foraging attributes of the world's birds and mammals. Ecology 95, 2027 (10.1890/13-1917.1) DOI
Grafen A. 1989. The phylogenetic regression. Phil. Trans. R. Soc. Lond. B 326, 119–157. (10.1098/rstb.1989.0106) PubMed DOI
Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401, 877–884. (10.1038/44766) PubMed DOI
Paterno GB, Penone C, Werner GDA. 2018. sensiPhy: an R package for sensitivity analysis in phylogenetic comparative methods. Methods Ecol. Evol. 9, 1461–1467. (10.1111/2041-210X.12990) DOI
von Hardenberg A, Gonzalez-Voyer A. 2013. Disentangling evolutionary cause-effect relationships with phylogenetic confirmatory path analysis. Evolution 67, 378–387. (10.1111/j.1558-5646.2012.01790.x) PubMed DOI
van der Bijl W. 2018. phylopath: easy phylogenetic path analysis in R. PeerJ 6, e4718 (10.7717/peerj.4718) PubMed DOI PMC
Gonzalez-Voyer A, von Hardenberg A.. 2014. An introduction to phylogenetic path analysis. In Modern phylogenetic comparative methods and their application in evolutionary biology (ed. Garamszegi LZ.), pp. 201–229. Berlin, Germany: Springer.
Adams DC. 2014. A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution 68, 2675–2688. (10.1111/evo.12463) PubMed DOI
Symonds MRE, Tattersall GJ. 2010. Geographical variation in bill size across bird species provides evidence for Allen's rule . Am. Nat. 176, 188–197. (10.1086/653666) PubMed DOI
Barbosa A, Moreno E. 1999. Evolution of foraging strategies in shorebirds: an ecomophological approach. Auk 116, 712–725. (10.2307/4089332) DOI
Parker SA. 1972. The tongues of Ephthianura and Ashbyia. Emu 66, 319–336. (10.1071/mu973019a) DOI
Gartrell BD. 2000. The nutritional, morphologic, and physiologic bases of nectarivory in Australian birds. J. Avian Med. Surg. 14, 85–94. (10.1647/1082-6742(2000)014[0085:TNMAPB]2.0.CO;2) DOI
Beecher WJ. 1951. Adaptations for food-getting in the American blackbirds. Auk 68, 411–441. (10.2307/4080840) DOI
Grundler MC, Rabosky DL. 2014. Trophic divergence despite morphological convergence in a continental radiation of snakes . Proc. R. Soc. B 281, 20140413 (10.1098/rspb.2014.0413) PubMed DOI PMC
Gould SJ. 1966. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41, 587–638. (10.1111/j.1469-185X.1966.tb01624.x) PubMed DOI
Klingenberg CP, Marugán-Lobón J. 2013. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 62, 591–610. (10.1093/sysbio/syt025) PubMed DOI
Ashmole NP. 1968. Body size, prey size, and ecological segregation in five sympatric tropical terns (Aves: Laridae). Syst. Biol. 17, 292–304. (10.1093/sysbio/17.3.292) DOI
Ford HA. 1979. Interspecific competition in Australian honeyeaters: depletion of common resources. Aust. J. Ecol. 4, 145–164. (10.1111/j.1442-9993.1979.tb01205.x) DOI
Lewontin RC. 1978. Adaptation. Sci. Am. 239, 212–231. (10.1038/scientificamerican0978-212) PubMed DOI
Field DJ, Hansen M, Burnham D, Wilson LE, Super K, Ehret D, Ebersole JA, Bhullar B-AS. 2018. Complete Icthyornis skull illuminates mosaic assembly of the avian head. Nature 557, 96–101. (10.1038/s41586-018-0053-y) PubMed DOI
Gould SJ, Vrba ES. 1982. Exaptation: a missing term in the science of form. Paleobiology 8, 4–15. (10.1017/s0094837300004310) DOI
Stephens DW, Krebs JR. 1986. Foraging theory. Princeton, NJ: Princeton University Press.
Wainwright PC, Alfaro ME, Bolnick DI, Hulsey CD. 2005. Many-to-one mapping of form to function: a general principle in organismal design? Integr. Comp. Biol. 45, 256–262. (10.1093/icb/45.2.256) PubMed DOI
Schluter D, Price TD, Rowe L. 1991. Conflicting selection pressures and life history trade-offs. Proc. R. Soc. Lond. B 246, 11–17. (10.1098/rspb.1991.0118) DOI
Midtgård U. 1978. Resting postures of the mallard Anas platyrhynchos. Ornis Scand. 9, 214–219. (10.2307/3675884) DOI
Tattersall GJ, Chaves JA, Danner RM. 2018. Thermoregulatory windows in Darwin's finches. Funct. Ecol. 32, 358–368. (10.1111/1365-2435.12990) DOI
Mason NA, Burns KJ. 2015. The effect of habitat and body size on the evolution of vocal displays in Thraupidae (tanagers), the largest family of songbirds. Biol. J. Linn. Soc. 114, 538–551. (10.1111/bij.12455) DOI
Nelson BS, Beckers GJL, Suthers RA. 2005. Vocal tract filtering and sound radiation in a songbird. J. Exp. Biol. 208, 297–308. (10.1242/jeb.01378) PubMed DOI
Riede T, Suthers RA, Fletcher NH, Blevins WE. 2006. Songbirds tune their vocal tract to the fundamental frequency of their song. Proc. Natl Acad. Sci. USA 103, 5543–5548. (10.1073/pnas.0601262103) PubMed DOI PMC
Westneat MW. 2003. A biomechanical model for analysis of muscle force, power output and lower jaw motion in fishes . J. Theor. Biol. 223, 269–281. (10.1016/S0022-5193(03)00058-4) PubMed DOI
van der Meij MAA, Bout RG.. 2004. Scaling of jaw muscle size and maximal bite force in finches . J. Exp. Biol. 207, 2745–2753. (10.1242/jeb.01091) PubMed DOI
Morton ES. 1975. Ecological sources of selection on avian sounds. Am. Nat. 109, 17–34. (10.1086/282971) DOI
Seddon N. 2005. Ecological adaptation and species recognition drives vocal evolution in Neotropical suboscine birds. Evolution 59, 200–215. (10.1554/04-300) PubMed DOI
Derryberry EP. 2009. Ecology shapes birdsong evolution: variation in morphology and habitat explains variation in white-crowned sparrow song. Am. Nat. 174, 24–33. (10.1086/599298) PubMed DOI
Wilkins MR, Seddon N, Safran RJ. 2013. Evolutionary divergence in acoustic signals: causes and consequences. Trends Ecol. Evol. 28, 156–166. (10.1016/j.tree.2012.10.002) PubMed DOI
Huber SK, Podos J. 2006. Beak morphology and song features covary in a population of Darwin's finches (Geospiza fortis). Biol. J. Linn. Soc. 88, 489–498. (10.1111/j.1095-8312.2006.00638.x) DOI
Kopp M, et al. 2017. Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am. Nat. 191, 1–20. (10.1086/694889) PubMed DOI
Wilson EO. 1976. Behavioral discretization and the number of castes in an ant species. Behav. Ecol. Sociobiol. 1, 141–154. (10.1007/BF00299195) DOI
Hölldobler B, Wilson EO. 1990. The ants. Cambridge, MA: Harvard University Press.
Talarico G, Palacios-Vargas JG, Alberti G. 2008. The pedipalp of Pseudocellus pearsei (Ricinulei, Arachnida)—ultrastructure of a multifunctional organ. Arthropod Struct. Dev. 37, 511–521. (10.1016/j.asd.2008.02.001) PubMed DOI
Friedman NR, Miller ET, Ball JR, Kasuga H, Remeš V, Economo EP. 2019. Data from: Evolution of a multifunctional trait: shared effects of foraging ecology and thermoregulation on beak morphology, with consequences for song evolution Dryad Digital Repository. (10.5061/dryad.crjdfn312) PubMed DOI PMC