• This record comes from PubMed

Evolution of a multifunctional trait: shared effects of foraging ecology and thermoregulation on beak morphology, with consequences for song evolution

. 2019 Dec 18 ; 286 (1917) : 20192474. [epub] 20191218

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

While morphological traits are often associated with multiple functions, it remains unclear how evolution balances the selective effects of different functions. Birds' beaks function not only in foraging but also in thermoregulating and singing, among other behaviours. Studies of beak evolution abound, however, most focus on a single function. Hence, we quantified relative contributions of different functions over an evolutionary timescale. We measured beak shape using geometric morphometrics and compared this trait with foraging behaviour, climatic variables and song characteristics in a phylogenetic comparative study of an Australasian radiation of songbirds (Meliphagidae). We found that both climate and foraging behaviour were significantly correlated with the beak shape and size. However, foraging ecology had a greater effect on shape, and climate had a nearly equal effect on size. We also found that evolutionary changes in beak morphology had significant consequences for vocal performance: species with elongate-shaped beaks sang at higher frequencies, while species with large beaks sang at a slower pace. The evolution of the avian beak exemplifies how morphological traits can be an evolutionary compromise among functions, and suggests that specialization along any functional axis may increase ecological divergence or reproductive isolation along others.

See more in PubMed

Gould SJ, Lewontin RC. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B 205, 581–598. (10.1098/rspb.1979.0086) PubMed DOI

Arnold SJ. 1983. Morphology, performance, and fitness. Am. Zool. 23, 347–361. (10.1093/icb/23.2.347) DOI

Grant PR, Grant BR. 2002. Unpredictable evolution in a 30-year study of Darwin's finches. Science 296, 707–711. (10.1126/science.1070315) PubMed DOI

Bennett AF, Lenski RE. 2007. An experimental test of evolutionary trade-offs during temperature adaptation. Proc. Natl Acad. Sci. USA 104, 8649–8654. (10.1073/pnas.0702117104) PubMed DOI PMC

Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, Dekel E, Kavanagh K, Alon U. 2012. Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space. Science 336, 1157–1160. (10.1126/science.1217405) PubMed DOI

Boag PT, Grant PR. 1981. Intense natural selection in a population of Darwin's finches (Geospizinae) in the Galápagos. Science 214, 82–85. (10.1126/science.214.4516.82) PubMed DOI

Cattau CE, Fletcher RJ, Kimball RT, Miller CW, Kitchens WM. 2018. Rapid morphological change of a top predator with the invasion of a novel prey. Nat. Ecol. Evol. 2, 108–115. (10.1038/s41559-017-0378-1) PubMed DOI

Collias EC, Collias NE. 1964. The development of nest-building behavior in a weaverbird. Auk 81, 42–52. (10.2307/4082609) DOI

Clayton DH, Moyer BR, Bush SE, Jones TG, Gardiner DW, Rhodes BB, Goller F. 2005. Adaptive significance of avian beak morphology for ectoparasite control . Proc. R. Soc. Lond. B 272, 811–817. (10.1098/rspb.2004.3036) PubMed DOI PMC

Podos J. 2001. Correlated evolution of morphology and vocal signal structure in Darwin’ s finches. Nature 409, 185–188. (10.1038/35051570) PubMed DOI

Greenberg R, Danner RM. 2012. The influence of the California marine layer on bill size in a generalist songbird. Evolution 66, 3825–3835. (10.1111/j.1558-5646.2012.01726.x) PubMed DOI

Tattersall GJ, Arnaout B, Symonds MRE. 2017. The evolution of the avian bill as a thermoregulatory organ . Biol. Rev. 92, 1630–1656. (10.1111/brv.12299) PubMed DOI

Herrel A, Podos J, Huber SK, Hendry AP. 2005. Bite performance and morphology in a population of Darwin's finches: implications for the evolution of beak shape. Funct. Ecol. 19, 43–48. (10.1111/j.0269-8463.2005.00923.x) DOI

Ballentine B. 2006. Morphological adaptation influences the evolution of a mating signal. Evolution 60, 1936–1944. (10.1111/j.0014-3820.2006.tb00536.x) PubMed DOI

Danner RM, Greenberg R. 2015. A critical season approach to Allen's rule: bill size declines with winter temperature in a cold temperate environment. J. Biogeogr. 42, 114–120. (10.1111/jbi.12389) DOI

Derryberry EP, Seddon N, Claramunt S, Tobias JA, Baker A, Aleixo A, Brumfield RT. 2012. Correlated evolution of beak morphology and song in the neotropical woodcreeper radiation. Evolution 66, 2784–2797. (10.1111/j.1558-5646.2012.01642.x) PubMed DOI

Friedman NR, Harmáčková L, Economo EP, Remeš V. 2017. Smaller beaks for colder winters: thermoregulation drives beak size evolution in Australasian songbirds. Evolution 71, 2120–2129. (10.1111/evo.13274) PubMed DOI

Olsen AM. 2017. Feeding ecology is the primary driver of beak shape diversification in waterfowl . Funct. Ecol. 31, 1985–1995. (10.1111/1365-2435.12890) DOI

Schluter D, Smith JNM. 1984. Natural selection on beak and body size in the song sparrow. Evolution 48, 1747–1763. (10.2307/2408803) PubMed DOI

Ballentine B, Gkoo KW, Greenberg R. 2013. Mechanisms of song divergence between swamp sparrow subspecies. Behaviour 150, 1165–1181. (10.1163/1568539X-00003093) DOI

Klingenberg CP. 2008. Morphological integration and developmental modularity. Annu. Rev. Ecol. Evol. Syst. 39, 115–132. (10.1146/annurev.ecolsys.37.091305.110054) DOI

Bright JA, Marugán-Lobón J, Cobb SN, Rayfield EJ. 2016. The shapes of bird beaks are highly controlled by nondietary factors. Proc. Natl Acad. Sci. USA 113, 5352–5357. (10.1073/pnas.1602683113) PubMed DOI PMC

Greenberg R, Cadena V, Danner RM, Tattersall GJ. 2012. Heat loss may explain bill size differences between birds occupying different habitats. PLoS ONE 7, e40933 (10.1371/journal.pone.0040933) PubMed DOI PMC

Olson EC, Miller RL. 1958. Morphological integration. Chicago, IL: University of Chicago Press.

Smith JM, Burian R, Kauffman S, Alberch P, Campbell J, Goodwin B, Lande R, Raup D, Wolpert L. 1985. Developmental constraints and evolution: a perspective from the Mountain Lake conference on development and evolution. Q. Rev. Biol. 60, 265–287. (10.1086/414425) DOI

Navalón G, Bright JA, Marugán-Lobón J, Rayfield EJ. 2019. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution 73, 422–435. (10.1111/evo.13655) PubMed DOI

Futuyma DJ, Moreno G. 1988. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233. (10.1146/annurev.ecolsys.19.1.207) DOI

Meyer A. 1989. Cost of morphological specialization: feeding performance of the two morphs in the trophically polymorphic cichlid fish, Cichlasoma citrinellum. Oecologia 80, 431–436. (10.1007/BF00379047) PubMed DOI

Schondube JE, Del Rio CM. 2003. The flowerpiercers' hook: an experimental test of an evolutionary trade-off. Proc. R. Soc. Lond. B 270, 195–198. (10.1098/rspb.2002.2231) PubMed DOI PMC

Derryberry EP, Seddon N, Derryberry GE, Claramunt S, Seeholzer GF, Brumfield RT, Tobias JA. 2018. Ecological drivers of song evolution in birds: disentangling the effects of habitat and morphology. Ecol. Evol. 8, 1890–1905. (10.1002/ece3.3760) PubMed DOI PMC

Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P. 2011. Magic traits in speciation: ‘magic’ but not rare? Trends Ecol. Evol. 26, 389–397. (10.1016/j.tree.2011.04.005) PubMed DOI

Fleischer RC, James HF, Olson SL. 2008. Convergent evolution of Hawaiian and Australo-Pacific honeyeaters from distant songbird ancestors. Curr. Biol. 18, 1927–1931. (10.1016/j.cub.2008.10.051) PubMed DOI

Miller ET, Zanne AE, Ricklefs RE. 2013. Niche conservatism constrains Australian honeyeater assemblages in stressful environments. Ecol. Lett. 16, 1186–1194. (10.1111/ele.12156) PubMed DOI

Andersen MJ, Naikatini A, Moyle RG. 2014. A molecular phylogeny of Pacific honeyeaters (Aves: Meliphagidae) reveals extensive paraphyly and an isolated Polynesian radiation. Mol. Phylogenet. Evol. 71, 308–315. (10.1016/j.ympev.2013.11.014) PubMed DOI

Joseph L, Toon A, Nyári AS, Longmore NW, Rowe KMC, Haryoko T, Trueman J, Gardner JL. 2014. A new synthesis of the molecular systematics and biogeography of honeyeaters (Passeriformes: Meliphagidae) highlights biogeographical and ecological complexity of a spectacular avian radiation. Zool. Scr. 43, 235–248. (10.1111/zsc.12049) DOI

Byrne M, et al. 2008. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol. Ecol. 17, 4398–4417. (10.1111/j.1365-294X.2008.03899.x) PubMed DOI

Byrne M, et al. 2011. Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. J. Biogeogr. 38, 1635–1656. (10.1111/j.1365-2699.2011.02535.x) DOI

Wooller RD, Richardson KC, Pagendham CM. 1988. The digestion of pollen by some Australian birds. Aust. J. Zool. 36, 357–362. (10.1071/ZO9880357) DOI

Allen JA. 1877. The influence of physical conditions in the genesis of species. Radic. Rev. 1, 108–140. (10.1111/j.1420-9101.2010.02141.x) DOI

Gardner JL, Symonds MRE, Joseph L, Ikin K, Stein J, Kruuk LEB. 2016. Spatial variation in avian bill size is associated with humidity in summer among Australian passerines. Clim. Chang. Responses 3, 11 (10.1186/s40665-016-0026-z) DOI

Miller ET, Wagner SK, Harmon LJ, Ricklefs RE. 2017. Radiating despite a lack of character: ecological divergence among closely related, morphologically similar honeyeaters (Aves: Meliphagidae) co-occurring in arid Australian environments. Am. Nat. 189, E14–E30. (10.1086/690008) PubMed DOI

Adams DC, Otárola-Castillo E. 2013. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399. (10.1111/2041-210X.12035) DOI

Zelditch ML, Swiderski DL, Sheets HD. 2012. Geometric morphometrics for biologists: a primer, 2nd edn London, UK: Academic Press.

Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223. (10.1111/j.2041-210X.2011.00169.x) DOI

Price JJ, Friedman NR, Omland KE. 2007. Song and plumage evolution in the New World orioles (Icterus) show similar lability and convergence in patterns. Evolution 61, 850–863. (10.1111/j.1558-5646.2007.00082.x) PubMed DOI

Tobias JA, Cornwallis CK, Derryberry EP, Claramunt S, Brumfield RT, Seddon N. 2014. Species coexistence and the dynamics of phenotypic evolution in adaptive radiation. Nature 506, 359–363. (10.1038/nature12874) PubMed DOI

del Hoyo J, Elliott A, Christie DA. 2008. Handbook of the birds of the world. Volume 13: penduline-tits to shrikes. Barcelona, Spain: Lynx Edicions.

Nowicki S, Westneat M. 1992. Birdsong: motor function and the evolution of communication. Semin. Neurosci. 4, 385–390. (10.1016/1044-5765(92)90046-5) DOI

Ryan MJ, Brenowitz EA. 1985. The role of body size, phylogeny, and ambient noise in the evolution of bird song. Am. Nat. 126, 87–100. (10.1086/284398) DOI

Beranek LL. 1954. Acoustics. New York, NY: McGraw-Hill.

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. (10.1002/joc.1276) DOI

Hijmans RJ. 2015. raster: geographic data analysis and modeling. R package version 2.4-20. See https://cran.r-project.org/package=raster.

BirdLife International, NatureServe. 2011. Bird species distribution maps of the world. Cambridge, UK; Arlington, VA: BirdLife International; NatureServe.

Marki PZ, Jønsson KA, Irestedt M, Nguyen JMT, Rahbek C, Fjeldså J. 2017. Supermatrix phylogeny and biogeography of the Australasian Meliphagides radiation (Aves: Passeriformes). Mol. Phylogenet. Evol. 107, 516–529. (10.1016/j.ympev.2016.12.021) PubMed DOI

Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (10.1186/1471-2148-7-214) PubMed DOI PMC

Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W.. 2014. EltonTraits 1.0: species-level foraging attributes of the world's birds and mammals. Ecology 95, 2027 (10.1890/13-1917.1) DOI

Grafen A. 1989. The phylogenetic regression. Phil. Trans. R. Soc. Lond. B 326, 119–157. (10.1098/rstb.1989.0106) PubMed DOI

Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401, 877–884. (10.1038/44766) PubMed DOI

Paterno GB, Penone C, Werner GDA. 2018. sensiPhy: an R package for sensitivity analysis in phylogenetic comparative methods. Methods Ecol. Evol. 9, 1461–1467. (10.1111/2041-210X.12990) DOI

von Hardenberg A, Gonzalez-Voyer A. 2013. Disentangling evolutionary cause-effect relationships with phylogenetic confirmatory path analysis. Evolution 67, 378–387. (10.1111/j.1558-5646.2012.01790.x) PubMed DOI

van der Bijl W. 2018. phylopath: easy phylogenetic path analysis in R. PeerJ 6, e4718 (10.7717/peerj.4718) PubMed DOI PMC

Gonzalez-Voyer A, von Hardenberg A.. 2014. An introduction to phylogenetic path analysis. In Modern phylogenetic comparative methods and their application in evolutionary biology (ed. Garamszegi LZ.), pp. 201–229. Berlin, Germany: Springer.

Adams DC. 2014. A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution 68, 2675–2688. (10.1111/evo.12463) PubMed DOI

Symonds MRE, Tattersall GJ. 2010. Geographical variation in bill size across bird species provides evidence for Allen's rule . Am. Nat. 176, 188–197. (10.1086/653666) PubMed DOI

Barbosa A, Moreno E. 1999. Evolution of foraging strategies in shorebirds: an ecomophological approach. Auk 116, 712–725. (10.2307/4089332) DOI

Parker SA. 1972. The tongues of Ephthianura and Ashbyia. Emu 66, 319–336. (10.1071/mu973019a) DOI

Gartrell BD. 2000. The nutritional, morphologic, and physiologic bases of nectarivory in Australian birds. J. Avian Med. Surg. 14, 85–94. (10.1647/1082-6742(2000)014[0085:TNMAPB]2.0.CO;2) DOI

Beecher WJ. 1951. Adaptations for food-getting in the American blackbirds. Auk 68, 411–441. (10.2307/4080840) DOI

Grundler MC, Rabosky DL. 2014. Trophic divergence despite morphological convergence in a continental radiation of snakes . Proc. R. Soc. B 281, 20140413 (10.1098/rspb.2014.0413) PubMed DOI PMC

Gould SJ. 1966. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41, 587–638. (10.1111/j.1469-185X.1966.tb01624.x) PubMed DOI

Klingenberg CP, Marugán-Lobón J. 2013. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 62, 591–610. (10.1093/sysbio/syt025) PubMed DOI

Ashmole NP. 1968. Body size, prey size, and ecological segregation in five sympatric tropical terns (Aves: Laridae). Syst. Biol. 17, 292–304. (10.1093/sysbio/17.3.292) DOI

Ford HA. 1979. Interspecific competition in Australian honeyeaters: depletion of common resources. Aust. J. Ecol. 4, 145–164. (10.1111/j.1442-9993.1979.tb01205.x) DOI

Lewontin RC. 1978. Adaptation. Sci. Am. 239, 212–231. (10.1038/scientificamerican0978-212) PubMed DOI

Field DJ, Hansen M, Burnham D, Wilson LE, Super K, Ehret D, Ebersole JA, Bhullar B-AS. 2018. Complete Icthyornis skull illuminates mosaic assembly of the avian head. Nature 557, 96–101. (10.1038/s41586-018-0053-y) PubMed DOI

Gould SJ, Vrba ES. 1982. Exaptation: a missing term in the science of form. Paleobiology 8, 4–15. (10.1017/s0094837300004310) DOI

Stephens DW, Krebs JR. 1986. Foraging theory. Princeton, NJ: Princeton University Press.

Wainwright PC, Alfaro ME, Bolnick DI, Hulsey CD. 2005. Many-to-one mapping of form to function: a general principle in organismal design? Integr. Comp. Biol. 45, 256–262. (10.1093/icb/45.2.256) PubMed DOI

Schluter D, Price TD, Rowe L. 1991. Conflicting selection pressures and life history trade-offs. Proc. R. Soc. Lond. B 246, 11–17. (10.1098/rspb.1991.0118) DOI

Midtgård U. 1978. Resting postures of the mallard Anas platyrhynchos. Ornis Scand. 9, 214–219. (10.2307/3675884) DOI

Tattersall GJ, Chaves JA, Danner RM. 2018. Thermoregulatory windows in Darwin's finches. Funct. Ecol. 32, 358–368. (10.1111/1365-2435.12990) DOI

Mason NA, Burns KJ. 2015. The effect of habitat and body size on the evolution of vocal displays in Thraupidae (tanagers), the largest family of songbirds. Biol. J. Linn. Soc. 114, 538–551. (10.1111/bij.12455) DOI

Nelson BS, Beckers GJL, Suthers RA. 2005. Vocal tract filtering and sound radiation in a songbird. J. Exp. Biol. 208, 297–308. (10.1242/jeb.01378) PubMed DOI

Riede T, Suthers RA, Fletcher NH, Blevins WE. 2006. Songbirds tune their vocal tract to the fundamental frequency of their song. Proc. Natl Acad. Sci. USA 103, 5543–5548. (10.1073/pnas.0601262103) PubMed DOI PMC

Westneat MW. 2003. A biomechanical model for analysis of muscle force, power output and lower jaw motion in fishes . J. Theor. Biol. 223, 269–281. (10.1016/S0022-5193(03)00058-4) PubMed DOI

van der Meij MAA, Bout RG.. 2004. Scaling of jaw muscle size and maximal bite force in finches . J. Exp. Biol. 207, 2745–2753. (10.1242/jeb.01091) PubMed DOI

Morton ES. 1975. Ecological sources of selection on avian sounds. Am. Nat. 109, 17–34. (10.1086/282971) DOI

Seddon N. 2005. Ecological adaptation and species recognition drives vocal evolution in Neotropical suboscine birds. Evolution 59, 200–215. (10.1554/04-300) PubMed DOI

Derryberry EP. 2009. Ecology shapes birdsong evolution: variation in morphology and habitat explains variation in white-crowned sparrow song. Am. Nat. 174, 24–33. (10.1086/599298) PubMed DOI

Wilkins MR, Seddon N, Safran RJ. 2013. Evolutionary divergence in acoustic signals: causes and consequences. Trends Ecol. Evol. 28, 156–166. (10.1016/j.tree.2012.10.002) PubMed DOI

Huber SK, Podos J. 2006. Beak morphology and song features covary in a population of Darwin's finches (Geospiza fortis). Biol. J. Linn. Soc. 88, 489–498. (10.1111/j.1095-8312.2006.00638.x) DOI

Kopp M, et al. 2017. Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am. Nat. 191, 1–20. (10.1086/694889) PubMed DOI

Wilson EO. 1976. Behavioral discretization and the number of castes in an ant species. Behav. Ecol. Sociobiol. 1, 141–154. (10.1007/BF00299195) DOI

Hölldobler B, Wilson EO. 1990. The ants. Cambridge, MA: Harvard University Press.

Talarico G, Palacios-Vargas JG, Alberti G. 2008. The pedipalp of Pseudocellus pearsei (Ricinulei, Arachnida)—ultrastructure of a multifunctional organ. Arthropod Struct. Dev. 37, 511–521. (10.1016/j.asd.2008.02.001) PubMed DOI

Friedman NR, Miller ET, Ball JR, Kasuga H, Remeš V, Economo EP. 2019. Data from: Evolution of a multifunctional trait: shared effects of foraging ecology and thermoregulation on beak morphology, with consequences for song evolution Dryad Digital Repository. (10.5061/dryad.crjdfn312) PubMed DOI PMC

See more in PubMed

Dryad
10.5061/dryad.crjdfn312

figshare
10.6084/m9.figshare.c.4762658

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...