Basalt-Fiber-Reinforced Polyvinyl Acetate Resin: A Coating for Ductile Plywood Panels

. 2019 Dec 20 ; 13 (1) : . [epub] 20191220

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31861838

Grantová podpora
LDF_TP_2019015 Internal Grant Agency (IGA) of the Faculty of Forestry and Wood Technology, Mendel University in Brno

The aim of this study was to create a reinforced composite wood-based panel that would be leaned towards the environment Plywood was used as a core material and fiber-reinforced polymer was used as a reinforcement. Conventional resin for the fiber-reinforced polymer was substituted with polyvinyl acetate (PVAC), which has several advantages, such as a lower price, easier handling, and better degradability. The second chosen component, basalt fiber, is cost attractive and environmentally friendly. The combination of one and two layers of fabric with three fiber fractions and 4 mm thick plywood was investigated. The best results were achieved with two layers of fabric and the highest fiber fraction. The improvements of the ultimate bending load and bending stiffness of the plywood in the perpendicular direction were 305% and 325%, respectively. The ultimate load and stiffness of the parallel direction were improved by 31% and 35%, respectively. However, specimens always failed in the compressional zone. The highest reinforcing effect was found with the impact test: The energy required to fracture specimens increased by 4213% and 6150% for one and two layers of fabric, respectively. In conclusion, specimens exhibited high ductility due to the PVAC and basalt fiber. The amount of work and energy required to cause fractures was extensive.

Zobrazit více v PubMed

Wilk C. Plywood: A Material Story. 1st ed. Thames & Hudson; London, UK: 2017.

Lefeuvre A., Garnier S., Jacquemin L., Pillain B., Sonnemann G. Anticipating in-use stocks of carbon fiber reinforced polymers and related waste flows generated by the commercial aeronautical sector until 2050. Resour. Conserv. Recycl. 2017;125:264–272. doi: 10.1016/j.resconrec.2017.06.023. DOI

Jacob A. Composites can be recycled. Reinf. Plast. 2011;55:45–46. doi: 10.1016/S0034-3617(11)70079-0. DOI

Falk B. Wood as a Sustainable Building Material. For. Prod. J. 2009;59:6–12.

Weichand P., Gadow R. Basalt fibre reinforced SiOC-matrix composites: Manufacturing technologies and characterisation. J. Eur. Ceram. Soc. 2015;35:4025–4030. doi: 10.1016/j.jeurceramsoc.2015.06.002. DOI

Tout R. A review of adhesives for furniture. Int. J. Adhes. Adhes. 2000;20:269–272. doi: 10.1016/S0143-7496(00)00002-6. DOI

Cobut A., Blanchet P., Beauregard R. The environmental footprint of interior wood doors in non-residential buildings—Part 1: Life cycle assessment. J. Clean. Prod. 2015;109:232–246. doi: 10.1016/j.jclepro.2015.04.079. DOI

Lu J., Easteal A.J., Edmonds N.R. Crosslinkable poly(vinyl acetate) emulsions for wood adhesive. Pigment Resin Technol. 2011;40:161–168. doi: 10.1108/03699421111130423. DOI

Amann M., Minge O. Advances in Polymer Science. Vol. 245. Springer; Berlin/Heidelberg, Germany: 2011. Biodegradability of Poly(vinyl acetate) and Related Polymers; pp. 137–172.

Kawabata N., Kurooka T. Biodegradability of poly(vinyl acetate) containing a pyridinium group. J. Appl. Polym. Sci. 1995;56:509–516. doi: 10.1002/app.1995.070560413. DOI

Konnerth J., Gindl W., Müller U. Elastic properties of adhesive polymers. I. Polymer films by means of electronic speckle pattern interferometry. J. Appl. Polym. Sci. 2007;103:3936–3939. doi: 10.1002/app.24434. DOI

Ku H., Wang H., Pattarachaiyakoop N., Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 2011;42:856–873. doi: 10.1016/j.compositesb.2011.01.010. DOI

Meredith J., Bilson E., Powe R., Collings E., Kirwan K. A performance versus cost analysis of prepreg carbon fibre epoxy energy absorption structures. Compos. Struct. 2015;124:206–213. doi: 10.1016/j.compstruct.2015.01.022. DOI

Oliveux G., Dandy L.O., Leeke G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015;72:61–99. doi: 10.1016/j.pmatsci.2015.01.004. DOI

Naqvi S.R., Prabhakara H.M., Bramer E.A., Dierkes W., Akkerman R., Brem G. A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resour. Conserv. Recycl. 2018;136:118–129. doi: 10.1016/j.resconrec.2018.04.013. DOI

Fiore V., Scalici T., Di Bella G., Valenza A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015;74:74–94. doi: 10.1016/j.compositesb.2014.12.034. DOI

Branston J., Das S., Kenno S.Y., Taylor C. Mechanical behaviour of basalt fibre reinforced concrete. Constr. Build. Mater. 2016;124:878–886. doi: 10.1016/j.conbuildmat.2016.08.009. DOI

Azrague K., Inman M.R., Alnæs L.I., Schlanbusch R.D., Johannesson B., Sigfusson T.I., Thorhallsson E.R., Franzson H., Arnason A.B., Vares S. Life cycle assessment as a tool for resource optimisation of continuous basalt fibre production in Iceland; Proceedings of the ECI Symposium Series; Cetraro, Italy. 5–10 June 2016.

Inman M., Thorhallsson E.R., Azrague K. A Mechanical and Environmental Assessment and Comparison of Basalt Fibre Reinforced Polymer (BFRP) Rebar and Steel Rebar in Concrete Beams. Energy Procedia. 2017;111:31–40. doi: 10.1016/j.egypro.2017.03.005. DOI

Artemenko S.E., Kadykova Y.A. Polymer composite materials based on carbon, basalt, and glass fibres. Fibre Chem. 2008;40:37–39. doi: 10.1007/s10692-008-9010-0. DOI

Kufel A., Kuciel S. Basalt/Wood Hybrid Composites Based on Polypropylene: Morphology, Processing Properties, and Mechanical and Thermal Expansion Performance. Materials. 2019;12:2557. doi: 10.3390/ma12162557. PubMed DOI PMC

Rescalvo F.J., Abarkane C., Suárez E., Valverde-Palacios I., Gallego A. Pine Beams Retrofitted with FRP and Poplar Planks: Mechanical Behavior. Materials. 2019;12:3081. doi: 10.3390/ma12193081. PubMed DOI PMC

Wdowiak A., Brol J. Effectiveness of Reinforcing Bent Non-Uniform Pre-Stressed Glulam Beams with Basalt Fibre Reinforced Polymers Rods. Materials. 2019;12:3141. doi: 10.3390/ma12193141. PubMed DOI PMC

Mladen B., Vladimir J., Stjepan P. Bending properties of carbon fiber reinforced plywood. Wood Res. 2003;48:13–24.

Kramár S., Král P. Reinforcing Effect of a Thin Basalt Fiber-reinforced Polymer Plywood Coating. BioResources. 2019;14:2062–2078.

Ashori A., Ghofrani M., Rezvani M.H., Ayrilmis N. Development and material properties of reinforced plywood using carbon fiber and waste rubber powder. Polym. Compos. 2018;39:675–680. doi: 10.1002/pc.23984. DOI

Xu H., Nakao T., Tanaka C., Yoshinobu M., Katayama H. Effects of fiber length and orientation on elasticity of fiber-reinforced plywood. J. Wood Sci. 1998;44:343–347. doi: 10.1007/BF01130445. DOI

Bal B.C., Bektaş I., Mengeloğlu F., Karakuş K., Ökkeş Demir H. Some technological properties of poplar plywood panels reinforced with glass fiber fabric. Constr. Build. Mater. 2015;101:952–957. doi: 10.1016/j.conbuildmat.2015.10.152. DOI

Biblis E.J., Carino H.F. Flexural properties of southern pine plywood overlaid with fiberglass-reinforced plastic. For. Prod. J. 2000;50:34–36.

Stoeckel F., Konnerth J., Gindl-Altmutter W. Mechanical properties of adhesives for bonding wood—A review. Int. J. Adhes. Adhes. 2013;45:32–41. doi: 10.1016/j.ijadhadh.2013.03.013. DOI

Mei C., Zhou D. Study on glass fiber reinforced poplar plywood used for concrete form. China For. Sci. Technol. 2009;23:79–82.

ISO 2074-Plywood-Vocabulary. European Comittee for Standardization; Brussels, Belgium: 2007.

ISO 4603-Textile glass-Woven Fabrics-Determination of Thickness. European Comittee for Standardization; Brussels, Belgium: 1993.

Singha K. A Short Review on Basalt Fiber. Int. J. Text. Sci. 2012;1:19–28.

Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures. National Research Council; Rome, Italy: 2014.

Handbook of Finnish Plywood. Finnish Forest Industries Federation; Helsinky, Finland: 2002.

EN 310-Wood-Based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength. European Comittee for Standardization; Brussels, Belgium: 1998.

ISO 6603-Determination of Puncture Impact Behaviour of Rigid Plastics. European Comittee for Standardization; Brussels, Belgium: 2000.

ISO 4606-Textile Glass-Woven Fabric-Determination of Tensile Breaking Force and Breaking Elongation by the Strip Method. European Comittee for Standardization; Brussels, Belgium: 1995.

Reddy J.N. Theory and Analysis of Elastic Plates and Shells. 2nd ed. CRC Press; Boca Raton, FL, USA: 2006.

Dömény J., Čermák P., Koiš V., Tippner J., Rousek R. Density profile and microstructural analysis of densified beech wood (Fagus sylvatica L.) plasticized by microwave treatment. Eur. J. Wood Wood Prod. 2018;76:105–111. doi: 10.1007/s00107-017-1173-z. DOI

Kollmann F.F.P., Côté W.A. Principles of Wood Science and Technology. Springer; Berlin/Heidelberg, Germany: 1968.

Kljak J., Brezović M., Jambreković V. Plywood stress optimisation using the finite element method. Wood Res. 2006;51:1–10.

Bal B.C., Bektaþ Ý. Some mechanical properties of plywood produced from eucalyptus, beech, and poplar veneer. Maderas. Cienc. Tecnol. 2014;16:99–108. doi: 10.4067/S0718-221X2014005000009. DOI

Sonderegger W., Niemz P. The influence of compression failure on the bending, impact bending and tensile strength of spruce wood and the evaluation of non-destructive methods for early detection. Holz Als Roh Und Werkst. 2004;62:335–342. doi: 10.1007/s00107-004-0482-1. DOI

Wei P., Wang B.J., Zhou D., Dai C., Wang Q., Huang S. Mechanical Properties of Poplar Laminated Veneer Lumber Modified by Carbon Fiber Reinforced Polymer. BioResources. 2013;8:4883–4898. doi: 10.15376/biores.8.4.4883-4898. DOI

Konnerth J., Jäger A., Eberhardsteiner J., Müller U., Gindl W. Elastic properties of adhesive polymers. II. Polymer films and bond lines by means of nanoindentation. J. Appl. Polym. Sci. 2006;102:1234–1239. doi: 10.1002/app.24427. DOI

Požgaj A., Chovanec D., Kurjatko S., Babiak M. Structure and Properties Od Wood (In Slovak: Štruktúra a Vlastnosti Dreva) 2nd ed. Príroda; Bratislava, Slovakia: 1997.

Abraham D., Matthews S., McIlhagger R. A comparison of physical properties of glass fibre epoxy composites produced by wet lay-up with autoclave consolidation and resin transfer moulding. Compos. Part A Appl. Sci. Manuf. 1998;29:795–801. doi: 10.1016/S1359-835X(98)00055-4. DOI

Jamshaid H., Mishra R., Militky J. Thermal and mechanical characterization of novel basalt woven hybrid structures. J. Text. Inst. 2016;107:462–471. doi: 10.1080/00405000.2015.1034940. DOI

Bauer F., Kempf M., Weiland F., Middendorf P. Structure-property relationships of basalt fibers for high performance applications. Compos. Part B Eng. 2018;145:121–128. doi: 10.1016/j.compositesb.2018.03.028. DOI

Militky J., Kovacic V. Ultimate Mechanical Properties of Basalt Filaments. Text. Res. J. 1996;66:225–229. doi: 10.1177/004051759606600407. DOI

Sim J., Park C., Moon D.Y. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. Part B Eng. 2005;36:504–512. doi: 10.1016/j.compositesb.2005.02.002. DOI

EN 204-Classification of Thermoplastic Wood Adhesives for Non-Structural Applications. European Comittee for Standardization; Brussels, Belgium: 2002.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mechanical Properties of Cellulose and Flax Fiber Unidirectional Reinforced Plywood

. 2022 Feb 21 ; 14 (4) : . [epub] 20220221

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...