Mechanical Properties of Cellulose and Flax Fiber Unidirectional Reinforced Plywood

. 2022 Feb 21 ; 14 (4) : . [epub] 20220221

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35215756

This research presents the influence of two different cellulose (hydrophobic pretreated/non-pretreated) and one flax-fiber unidirectional nonwoven low areal weight fiber reinforcements on the mechanical properties of urea-formaldehyde bonded five layered beech (Fagus sylvatica L.) plywood as an alternative to commonly used synthetic fiber reinforcements. The results display divergent trends regarding the improvement of the mechanical properties-modulus of elasticity, modulus of rupture, tensile strength, shear strength, and screw withdrawal resistance. The non-treated cellulose and flax reinforcing nonwoven fabrics revealed similar mechanical behaviors. The hydrophobic pretreatment of cellulose nonwovens improved the performance of plywood regarding tensile strength (10-11%), shear strength (7-16%), screw withdrawal resistance (11-15%), and modulus of rupture (0-2%), but lowered modulus of elasticity (2-3%) compared to the reference.

Zobrazit více v PubMed

Paulitsch M., Barbu M.C. Holzwerkstoffe der Moderne. DRW Verlag Weinbrenner; Leinfelden-Echterdingen, Germany: 2015.

Mahút J., Réh R. Plywood and Decorative Veneers. Technická Univerzita vo Zvolene; Zvolene, Slovakia: 2007.

Hansen E. Structural panel industry evolution: Implications for innovation and new product development. For. Policy Econ. 2006;8:774–783. doi: 10.1016/j.forpol.2005.06.008. DOI

Marketresearch. [(accessed on 23 November 2021)]. Available online: https://www.marketresearch.com/Renub-Research-v3619/Global-Plywood-Volume-Consumption-Production-14326454/

Bccresearch. [(accessed on 23 November 2021)]. Available online: https://www.bccresearch.com/market-research/manufacturing/plywood-manufacturing-global-markets.html.

Barbu M.C., Tudor E.M. State of the art of the Chinese forestry, wood industry and its markets. Wood Mater. Sci. Eng. 2021:1–10. doi: 10.1080/17480272.2021.1891457. DOI

Kristak L., Kubovský I., Réh R. New Challenges in Wood and Wood-Based Materials. Polymers. 2021;13:2538. doi: 10.3390/polym13152538. PubMed DOI PMC

Plywood—Classification and terminology—Part 2: Terminology. European Committee for Standardization; Brussels, Belgium: 1999.

Stokke D.D., Wu Q., Han G. Introduction to Wood and Natural Fiber Composites. John and Wiley & Sons; Hoboken, NJ, USA: 2013. DOI

Wagenführ A., Scholz F. Taschenbuch der Holztechnik. Carl Hanser Verlag; Munich, Germany: 2008.

Marra G.G. Wood Products in the Future-A Technological Extrapolation. Des. Aesthet. Wood State Univ. N. Y. Press. Albany. 1972

Callister W.D., Rethwisch D.G. Fundamentals of Materials Science and Engineering: An Interactive eText. 5th ed. John and Wiley & Sons; Hoboken, NJ, USA: 2001.

Dresher W.H. The age of fibers. JOM. 1969;21:17–26. doi: 10.1007/BF03378781. DOI

Müssig J. Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications, Renewable. John and Wiley & Sons; Hoboken, NJ, USA: 2010.

Baley C., Gomina M., Breard J., Bourmaud A., Davies P. Variability of mechanical properties of flax fibres for composite reinforcement. A review. Ind. Crop. Prod. 2019;145:111984. doi: 10.1016/j.indcrop.2019.111984. DOI

Laufenberg T.L., Rowlands R.E., Krueger G.P. Economic Feasibility of Synthetic Fiber Reinforced Laminated Veneer Lumber (Lvl) For. Prod. J. 1984;34:15–22.

Kramár S., Král P. Reinforcing effect of a thin basalt fiber-reinforced polymer plywood coating. BioResources. 2019;14:2062–2078. doi: 10.15376/biores.14.1.2062-2078. DOI

Lohmus R., Kallakas H., Tuhkanen E., Gulik V., Kiisk M., Saal K., Kalamees T. The Effect of Prestressing and Temperature on Tensile Strength of Basalt Fiber-Reinforced Plywood. Materials. 2021;14:4701. doi: 10.3390/ma14164701. PubMed DOI PMC

Tautenhain F., Rinberg R., Kroll L. Novel Lightweight Semi-Finished Products Made of Poplar Veneer Plywood with Basalt Fibre Reinforcement. Key Eng. Mater. 2019;809:645–649. doi: 10.4028/www.scientific.net/KEM.809.645. DOI

Kramár S., Trcala M., Chitbanyong K., Král P., Puangsin B. Basalt-Fiber-Reinforced Polyvinyl Acetate Resin: A Coating for Ductile Plywood Panels. Materials. 2019;13:49. doi: 10.3390/ma13010049. PubMed DOI PMC

Zike S., Kalnins K. Enhanced impact absorption properties of plywood; Proceedings of the 3rd International Conference Civil Engineering; Beijing, China. 20–24 November 2011; pp. 125–130.

Ramesh P., Mohit H., Arul Mozhi Selvan V. Environmental Impact of Wood Based Biocomposite Using Life Cycle Assessment Methodology. In: Mavinkere Rangappa S., Parameswaranpillai J., Kumar M.H., Siengchin S., editors. Wood Polymer Composites: Recent Advancements and Applications. Springer; Singapore: 2021. pp. 255–268.

Basterra L., Acuña L., Casado M., López G., Bueno A. Strength testing of Poplar duo beams, Populus x euramericana (Dode) Guinier cv. I-214, with fibre reinforcement. Constr. Build. Mater. 2012;36:90–96. doi: 10.1016/j.conbuildmat.2012.05.001. DOI

Bal B.C. Some physical and mechanical properties of reinforced laminated veneer lumber. Constr. Build. Mater. 2014;68:120–126. doi: 10.1016/j.conbuildmat.2014.06.042. DOI

Jorda J., Kain G., Barbu M.-C., Haupt M., Krišťák L. Investigation of 3D-Moldability of Flax Fiber Reinforced Beech Plywood. Polymers. 2020;12:2852. doi: 10.3390/polym12122852. PubMed DOI PMC

Valdes M., Giaccu G.F., Meloni D., Concu G. Reinforcement of maritime pine cross-laminated timber panels by means of natural flax fibers. Constr. Build. Mater. 2019;233:117741. doi: 10.1016/j.conbuildmat.2019.117741. DOI

Jorda J., Kain G., Barbu M.-C., Petutschnigg A., Král P. Influence of Adhesive Systems on the Mechanical and Physical Properties of Flax Fiber Reinforced Beech Plywood. Polymers. 2021;13:3086. doi: 10.3390/polym13183086. PubMed DOI PMC

Ramesh M. Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: A review on preparation, properties and prospects. Prog. Mater. Sci. 2018;102:109–166. doi: 10.1016/j.pmatsci.2018.12.004. DOI

Zimniewska M., Rozańska W., Gryszczynska A., Romanowska B., Kicinska-Jakubowska A. Antioxidant Potential of Hemp and Flax Fibers Depending on Their Chemical Composition. Molecules. 2018;23:1993. doi: 10.3390/molecules23081993. PubMed DOI PMC

Wang J., Wang L., Gardner D.J., Shaler S.M., Cai Z. Towards a cellulose-based society: Opportunities and challenges. Cellulose. 2021;28:4511–4543. doi: 10.1007/s10570-021-03771-4. DOI

Lefeuvre A., Bourmaud A., Morvan C., Baley C. Tensile properties of elementary fibres of flax and glass: Analysis of reproducibility and scattering. Mater. Lett. 2014;130:289–291. doi: 10.1016/j.matlet.2014.05.115. DOI

Klemm D., Heublein B., Fink H.-P., Bohn A. Cellulose: Faszinierendes Biopolymer und nachhaltiger Rohstoff. Angew. Chem. 2005;117:3422–3458. doi: 10.1002/ange.200460587. DOI

Tu H., Zhu M., Duan B., Zhang L. Recent Progress in High-Strength and Robust Regenerated Cellulose Materials. Adv. Mater. 2020;33 doi: 10.1002/adma.202000682. PubMed DOI

Pérez S., Samain D. Structure and Engineering of Celluloses. Adv. Carbohydr. Chem. Biochem. 2010;64:25–116. doi: 10.1016/s0065-2318(10)64003-6. PubMed DOI

Adusumali R.-B., Reifferscheid M., Weber H., Roeder T., Sixta H., Gindl W. Mechanical Properties of Regenerated Cellulose Fibres for Composites. Macromol. Symp. 2006;244:119–125. doi: 10.1002/masy.200651211. DOI

Lohmann U. Holz Handbuch. DRW; Echterdingen-Leinenfelden, Germany: 2010.

Biadała T., Czarnecki R., Dukarska D. Water resistant plywood of increased elasticity produced from European wood species. Wood Res. 2020;65:111–124. doi: 10.37763/wr.1336-4561/65.1.111124. DOI

Wood-Based Panels—Determination of Density. European Committee for Standardization; Brussels, Belgium: 2005.

Spulle U., Meija A., Kūliņš L., Kopeika E., Liepa K.H., Šillers H., Zudrags K. Influence of hot pressing technological parameters on plywood bending properties. BioResources. 2021;16:7550–7561. doi: 10.15376/biores.16.4.7550-7561. DOI

Wood-Based Panels—Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization; Brussels, Belgium: 2005.

Particleboards and Fibreboards—Determination of Resistance to Axial Withdrawal of Screws. European Committee for Standardization; Brussels, Belgium: 2011.

Prüfung von Sperrholz—Bestimmung des Zug-Elastizitätsmoduls und der Zugfestigkeit. Deutsches Institut für Normung; Berlin, Germany: 2016.

Plywood—Bonding quality—Test methods. European Committee for Standardization; Brussels, Belgium: 2005.

Particleboards and Fiberboards—Determination of Tensile Strength Perpendicular to the Plane of the Board. European Committee for Standardization; Brussels, Belgium: 2005.

Sepperer T., Šket P., Petutschnigg A., Hüsing N. Tannin-Furanic Foams Formed by Mechanical Agitation: Influence of Surfactant and Ingredient Ratios. Polymers. 2021;13:3058. doi: 10.3390/polym13183058. PubMed DOI PMC

Niemz P. Physik des Holzes und der Holzwerkstoffe. DRW Verlag Weinbrenner; Leinfelden-Echterdingen, Germany: 1993.

Sonderegger W., Niemz P. Untersuchungen zur Quellung und Wärmedehnung von Faser-, Span- und Sperrholzplatten. Holz Roh Werkst. 2006;64:11–20. doi: 10.1007/s00107-005-0043-2. DOI

Gumowska A., Wronka A., Borysiuk P., Robles E., Sala C., Kowaluk G. Production of Layered Wood Composites with a Time-Saving Layer-By-Layer Addition. BioResources. 2018;13:8089–8099. doi: 10.15376/biores.13.4.8089-8099. DOI

Auriga R., Gumowska A., Szymanowski K., Wronka A., Robles E., Ocipka P., Kowaluk G. Performance properties of plywood composites reinforced with carbon fibers. Compos. Struct. 2020;248:112533. doi: 10.1016/j.compstruct.2020.112533. DOI

Réh R., Krišťák L., Sedliačik J., Bekhta P., Božiková M., Kunecová D., Vozárová V., Tudor E., Antov P., Savov V. Utilization of Birch Bark as an Eco-Friendly Filler in Urea-Formaldehyde Adhesives for Plywood Manufacturing. Polymers. 2021;13:511. doi: 10.3390/polym13040511. PubMed DOI PMC

Gößwald J., Barbu M.C., Petutschnigg A., Krišťák L., Tudor E.M. Oversized Planer Shavings for the Core Layer of Lightweight Particleboard. Polymers. 2021;13:1125. doi: 10.3390/polym13071125. PubMed DOI PMC

Xing C., Riedl B., Cloutier A. Measurement of urea-formaldehyde resin distribution as a function of MDF fiber size by laser scanning microscopy. Wood Sci. Technol. 2004;37:495–507. doi: 10.1007/s00226-003-0195-3. DOI

Kawalerczyk J., Dziurka D., Mirski R., Siuda J. The reduction of adhesive application in plywood manufacturing by using nanocellulose-reinforced urea-formaldehyde resin. J. Appl. Polym. Sci. 2021;138:1–9. doi: 10.1002/app.49834. DOI

Kallakas H., Rohumaa A., Vahermets H., Kers J. Effect of Different Hardwood Species and Lay-Up Schemes on the Mechanical Properties of Plywood. Forests. 2020;11:649. doi: 10.3390/f11060649. DOI

Bekhta P., Hiziroglu S., Shepelyuk O. Properties of plywood manufactured from compressed veneer as building material. Mater. Des. 2008;30:947–953. doi: 10.1016/j.matdes.2008.07.001. DOI

Kollmann F. Technologie des Holzes und der Holzwerkstoffe. 2nd ed. Springer; Berlin/Heidelberg, Germany: 1955. DOI

Popovska V.J., Iliev B., Zlateski G. Impact of Veneer Layouts on Plywood Tensile Strength. Drv. Ind. 2017;68:153–161. doi: 10.5552/drind.2017.1634. DOI

Li W., Zhang Z., Zhou G., Leng W., Mei C. Understanding the interaction between bonding strength and strain distribution of plywood. Int. J. Adhes. Adhes. 2020;98:102506. doi: 10.1016/j.ijadhadh.2019.102506. DOI

Rathke J., Sinn G., Harm M., Teischinger A., Weigl M., Müller U. Fracture energy vs. internal bond strength—Mechanical characterization of wood-based panels. Wood Mater. Sci. Eng. 2012;7:176–185. doi: 10.1080/17480272.2012.699979. DOI

Réh R., Igaz R., Krišťák L., Ružiak I., Gajtanska M., Božíková M., Kučerka M. Functionality of Beech Bark in Adhesive Mixtures Used in Plywood and Its Effect on the Stability Associated with Material Systems. Materials. 2019;12:1298. doi: 10.3390/ma12081298. PubMed DOI PMC

Maleki S., Najafi S.K., Ebrahimi G., Ghofrani M. Withdrawal resistance of screws in structural composite lumber made of poplar (Populus deltoides) Constr. Build. Mater. 2017;142:499–505. doi: 10.1016/j.conbuildmat.2017.03.039. DOI

Kral P., Klímek P., Mishra P.K., Rademacher P., Wimmer R. Preparation and Characterization of Cork Layered Composite Plywood Boards. BioResources. 2014;9:1977–1985. doi: 10.15376/biores.9.2.1977-1985. DOI

Hübner U., Rasser M., Schickhofer G. Withdrawal Capacity of Screws in European ash (Fraxinus excelsior L.); Proceedings of the 11th World Conference on Timber Engineering; Trentino, Italy. 20–24 June 2010.

Liu Y., Guan M. Selected physical, mechanical, and insulation properties of carbon fiber fabric-reinforced composite plywood for carriage floors. Holz Roh Werkst. 2019;77:995–1007. doi: 10.1007/s00107-019-01467-y. DOI

Bal B.C. Propriedades de fixação de parafusos e pregos em painéis compensados de madeira reforçados com tecido de fibra de vidro. Cerne. 2017;23:11–18. doi: 10.1590/01047760201723012210. DOI

Kramár S., Mayer A.K., Schöpper C., Mai C. Use of basalt scrim to enhance mechanical properties of particleboards. Constr. Build. Mater. 2020;238:117769. doi: 10.1016/j.conbuildmat.2019.117769. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Quebracho Tannin Bio-Based Adhesives for Plywood

. 2022 May 31 ; 14 (11) : . [epub] 20220531

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...