Quebracho Tannin Bio-Based Adhesives for Plywood
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35683930
PubMed Central
PMC9183091
DOI
10.3390/polym14112257
PII: polym14112257
Knihovny.cz E-zdroje
- Klíčová slova
- biogenic adhesives, plywood, quebracho, tannin furfural,
- Publikační typ
- časopisecké články MeSH
Wood-based products are traditionally bonded with synthetic adhesives. Resources availability and ecological concerns have drawn attention to bio-based sources. The use of tannin-based adhesives for engineered wood products has been known for decades, however, these formulations were hardly used for the gluing of solid wood because their rigidity involved low performance. In this work, a completely bio-based formulation consisting of Quebracho (Schinopsis balancae) extract and furfural is characterized in terms of viscosity, gel time, and FT-IR spectroscopy. Further, the usability as an adhesive for beech (Fagus sylvatica) plywood with regard to press parameters (time and temperature) and its influence on physical (density and thickness) and mechanical properties (modulus of elasticity, modulus of rupture and tensile shear strength) were determined. These polyphenolic adhesives presented non-Newtonian behavior but still good spreading at room temperature as well as evident signs of crosslinking when exposed to 100 °C. Within the press temperature, a range of 125 °C to 140 °C gained suitable results with regard to mechanical properties. The modulus of elasticity of five layered 10 mm beech plywood ranged between 9600 N/mm2 and 11,600 N/mm2, respectively, with 66 N/mm2 to 100 N/mm2 for the modulus of rupture. The dry state tensile shear strength of ~2.2 N/mm2 matched with other tannin-based formulations, but showed delamination after 24 h of water storage. The proposed quebracho tannin-furfural formulation can be a bio-based alternative adhesive for industrial applicability for special plywood products in a dry environment, and it offers new possibilities in terms of recyclability.
Zobrazit více v PubMed
Beyer G., Defays M., Fischer M., Fletcher J., de Munck E., de Jaeger F., Van Riet C., Vandeweghe K., Wijnendaele K. Tackle Clim. Change—Use Wood. CEI-Bois; Brussels, Belgium: 2011. p. 84.
Oliver C.D., Nassar N.T., Lippke B.R., McCarter J.B. Carbon, Fossil Fuel, and Biodiversity Mitigation with Wood and Forests. J. Sustain. For. 2014;33:248–275. doi: 10.1080/10549811.2013.839386. DOI
Moncaster A.M., Pomponi F., Symons K.E., Guthrie P.M. Why Method Matters: Temporal, Spatial and Physical Variations in LCA and Their Impact on Choice of Structural System. Energy Build. 2018;173:389–398. doi: 10.1016/j.enbuild.2018.05.039. DOI
Churkina G., Organschi A., Reyer C.P.O., Ruff A., Vinke K., Liu Z., Reck B.K., Graedel T.E., Schellnhuber H.J. Buildings as a Global Carbon Sink. Nat. Sustain. 2020;3:269–276. doi: 10.1038/s41893-019-0462-4. DOI
Irle M., Barbu M.C. In: Wood-Based Panels: An Introduction for Specialists. Thoemen M., Irle M., Sernek M., editors. Brunel University Press; London, UK: 2010. pp. 1–94. Cost Action E49.
Klarić S., Obučina M. New Trends in Engineering Wood Technologies. Lect. Notes Netw. Syst. 2020;76:712–727. doi: 10.1007/978-3-030-18072-0_83. DOI
Heinrich L.A. Future Opportunities for Bio-Based Adhesives-Advantages beyond Renewability. Green Chem. 2019;21:1866–1888. doi: 10.1039/C8GC03746A. DOI
Alliedmarketresearch. [(accessed on 27 May 2022)]. Available online: https://www.alliedmarketresearch.com/bioadhesives-market-A11324.
Marketsandmarkets. [(accessed on 27 May 2022)]. Available online: https://www.marketsandmarkets.com/Market-Reports/bioadhesive-market-16386893.html.
Hemmilä V., Adamopoulos S., Karlsson O., Kumar A. Development of Sustainable Bio-Adhesives for Engineered Wood Panels-A Review. RSC Adv. 2017;7:38604–38630. doi: 10.1039/C7RA06598A. DOI
Ferdosian F., Pan Z., Gao G., Zhao B. Bio-Based Adhesives and Evaluation for Wood Composites Application. Polymers. 2017;9:70. doi: 10.3390/polym9020070. PubMed DOI PMC
Kristak L., Antov P., Bekhta P., Lubis M.A.R., Iswanto A.H., Reh R., Sedliacik J., Savov V., Taghiyari H.R., Papadopoulos A.N., et al. Recent Progress in Ultra-Low Formaldehyde Emitting Adhesive Systems and Formaldehyde Scavengers in Wood-Based Panels: A Review. Wood Mater. Sci. Eng. 2022 doi: 10.1080/17480272.2022.2056080. DOI
Oktay S., Kızılcan N., Bengü B. Development of Bio-Based Cornstarch—Mimosa Tannin—Sugar Adhesive for Interior Particleboard Production. Ind. Crops Prod. 2021;170:113689. doi: 10.1016/j.indcrop.2021.113689. DOI
Paul G.B., Timar M.C., Zeleniuc O., Lunguleasa A., Coșereanu C. Mechanical Properties and Formaldehyde Release of Particleboard Made with Lignin-Based Adhesives. Appl. Sci. 2021;11:8720. doi: 10.3390/app11188720. DOI
Lubis M.A.R., Labib A., Sudarmanto, Akbar F., Nuryawan A., Antov P., Kristak L., Papadopoulos A.N., Pizzi A. Influence of Lignin Content and Pressing Time on Plywood Properties Bonded with Cold-Setting Adhesive Based on Poly (Vinyl Alcohol), Lignin, and Hexamine. Polymers. 2022;14:2111. doi: 10.3390/polym14102111. PubMed DOI PMC
Zhang Y., Shi R., Xu Y., Chen M., Zhang J., Gao Q., Li J. Developing a Stable High-Performance Soybean Meal-Based Adhesive Using a Simple High-Pressure Homogenization Technology. J. Clean. Prod. 2020;256:120336. doi: 10.1016/j.jclepro.2020.120336. DOI
Ghahri S., Pizzi A., Hajihassani R. A Study of Concept to Prepare Totally Biosourced Wood Adhesives from Only Soy Protein and Tannin. Polymers. 2022;14:1150. doi: 10.3390/polym14061150. PubMed DOI PMC
Pizzi A. Recent Developments in Eco-Efficient Bio-Based Adhesives for Wood Bonding: Opportunities and Issues. J. Adhes. Sci. Technol. 2006;20:829–846. doi: 10.1163/156856106777638635. DOI
Shirmohammadli Y., Efhamisisi D., Pizzi A. Tannins as a Sustainable Raw Material for Green Chemistry: A Review. Ind. Crops Prod. 2018;126:316–332. doi: 10.1016/j.indcrop.2018.10.034. DOI
Pizzi A., Mittal K.L. Handbook of Adhesive Technology. 3rd ed. CRC Press; Boca Raton, FL, USA: 2017. pp. 223–262. DOI
Xu Y., Guo L., Zhang H., Zhai H., Ren H. Research Status, Industrial Application Demand and Prospects of Phenolic Resin. RSC Adv. 2019;9:28924–28935. doi: 10.1039/C9RA06487G. PubMed DOI PMC
Arias A., González-García S., Feijoo G., Moreira M.T. Tannin-Based Bio-Adhesives for the Wood Panel Industry as Sustainable Alternatives to Petrochemical Resins. J. Ind. Ecol. 2021;26:627–642. doi: 10.1111/jiec.13210. DOI
Pizzi A. The Chemistry and Development of Tannin/Urea–Formaldehyde Condensates for Exterior Wood Adhesives. J. Appl. Polym. Sci. 1979;23:2777–2792. doi: 10.1002/app.1979.070230922. DOI
Navarrete P., Pizzi A., Pasch H., Rode K., Delmotte L. Characterization of Two Maritime Pine Tannins as Wood Adhesives. J. Adhes. Sci. Technol. 2013;27:2462–2479. doi: 10.1080/01694243.2013.787515. DOI
Engozogho Anris S.P., Bikoro Bi Athomo A., Safou-Tchiama R., Leroyer L., Vidal M., Charrier B. Development of Green Adhesives for Fiberboard Manufacturing, Using Okoume Bark Tannins and Hexamine–Characterization by 1H NMR, TMA, TGA and DSC Analysis. J. Adhes. Sci. Technol. 2021;35:436–449. doi: 10.1080/01694243.2020.1808356. DOI
Ballerini A., Despres A., Pizzi A. Non-Toxic, Zero Emission Tannin-Glyoxal Adhesives for Wood Panels. Holz Roh-Werkst. 2005;63:477–478. doi: 10.1007/s00107-005-0048-x. DOI
Kabbour M., Luque R. Furfural as a Platform Chemical: From Production to Applications. In: Saravanamurugan S., Pandey A., Riisager A., editors. Biomass, Biofuels, Biochemicals—Recent Advances in Development of Platform Chemicals. Elsevier B.V.; Amsterdam, The Netherlands: 2020. DOI
Bozell J.J., Petersen G.R. Technology Development for the Production of Biobased Products from Biorefinery Carbohydrates—The US Department of Energy’s “Top 10” Revisited. Green Chem. 2010;12:539–555. doi: 10.1039/b922014c. DOI
Cesprini E., Šket P., Causin V., Zanetti M. Development of Quebracho (Schinopsis balansae) Tannin-Based Thermoset Resins. Polymers. 2021;13:4412. doi: 10.3390/polym13244412. PubMed DOI PMC
Wood-Based Panels—Determination of Density. European Committee for Standardization; Brussels, Belgium: 2005.
Spulle U., Meija A., Kūlinš L., Kopeika E., Liepa K.H., Šillers H., Zudrags K. Influence of Hot Pressing Technological Parameters on Plywood Bending Properties. BioResources. 2021;16:7550–7561. doi: 10.15376/biores.16.4.7550-7561. DOI
Plywood—Bonding Quality—Test Methods. European Committee for Standardization; Brussels, Belgium: 2005.
Wood-Based Panels—Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization; Brussels, Belgium: 2005.
Navarrete P., Pizzi A., Tapin-Lingua S., Benjelloun-Mlayah B., Pasch H., Rode K., Delmotte L., Rigolet S. Low Formaldehyde Emitting Biobased Wood Adhesives Manufactured from Mixtures of Tannin and Glyoxylated Lignin. J. Adhes. Sci. Technol. 2012;26:1667–1684. doi: 10.1163/156856111X618489. DOI
Hauptt R.A., Sellers T. Characterizations of Phenol-Formaldehyde Resol Resins. Ind. Eng. Chem. Res. 1994;33:693–697. doi: 10.1021/ie00027a030. DOI
Ricci A., Olejar K.J., Parpinello G.P., Kilmartin P.A., Versari A. Application of Fourier Transform Infrared (FTIR) Spectroscopy in the Characterization of Tannins. Appl. Spectrosc. Rev. 2015;50:407–442. doi: 10.1080/05704928.2014.1000461. DOI
Tondi G., Petutschnigg A. Middle Infrared (ATR FT-MIR) Characterization of Industrial Tannin Extracts. Ind. Crops Prod. 2015;65:422–428. doi: 10.1016/j.indcrop.2014.11.005. DOI
Mohamad N., Abd-Talib N., Kelly Yong T.L. Furfural Production from Oil Palm Frond (OPF) under Subcritical Ethanol Conditions. Mater. Today Proc. 2020;31:116–121. doi: 10.1016/j.matpr.2020.01.256. DOI
Kane S.N., Mishra A., Dutta A.K. Synthesis of Furfural from Water Hyacinth (Eichornia croassipes) This. Mater. Sci. Eng. 2017;172:012027. doi: 10.1088/1742-6596/755/1/011001. DOI
Tondi G. Tannin-Based Copolymer Resins: Synthesis and Characterization by Solid State 13C NMR and FT-IR Spectroscopy. Polymers. 2017;9:223. doi: 10.3390/polym9060223. PubMed DOI PMC
Wagenführ A., Scholz F. Taschenbuch der Holztechnik. Carl Hanser Verlag; München, Germany: 2008.
Jorda J., Kain G., Barbu M.-C., Petutschnigg A., Král P. Influence of Adhesive Systems on the Mechanical and Physical Properties of Flax Fiber Reinforced Beech Plywood. Polymers. 2021;13:3086. doi: 10.3390/polym13183086. PubMed DOI PMC
Jorda J., Kain G., Barbu M.-C., Köll B., Petutschnigg A., Král P. Mechanical Properties of Cellulose and Flax Fiber Unidirectional Reinforced Plywood. Polymers. 2022;14:843. doi: 10.3390/polym14040843. PubMed DOI PMC
Mansouri H.R., Pizzi A., Leban J.M. Improved Water Resistance of UF Adhesives for Plywood by Small PMDI Additions. Holz Roh-Werkst. 2006;64:218–220. doi: 10.1007/s00107-005-0046-z. DOI
Luo J., Luo J., Gao Q., Li J. Effects of Heat Treatment on Wet Shear Strength of Plywood Bonded with Soybean Meal-Based Adhesive. Ind. Crops Prod. 2015;63:281–286. doi: 10.1016/j.indcrop.2014.09.054. DOI
Bekhta P., Hiziroglu S., Shepelyuk O. Properties of Plywood Manufactured from Compressed Veneer as Building Material. Mater. Des. 2009;30:947–953. doi: 10.1016/j.matdes.2008.07.001. DOI
Cabral J.P., Kafle B., Subhani M., Reiner J., Ashraf M. Densification of Timber: A Review on the Process, Material Properties, and Application. J. Wood Sci. 2022;68:20. doi: 10.1186/s10086-022-02028-3. DOI
Niemz P. Physik des Holzes und der Holzwerkstoffe. DRW Verlag Weinbrenner; Leinfelden-Echterdingen, Germany: 1993.
Sperrholz Teil 5—Bau-Furniersperrholz aus Buche. Deutsches Institut für Normung; Berlin, Germany: 1980.
Hrázský J., Král P. Assessing the Bending Strength and Modulus of Elasticity in Bending of Exterior Foiled Plywoods in Relation to Their Construction. J. For. Sci. 2005;51:77–94. doi: 10.17221/4546-JFS. DOI
Biadała T., Czarnecki R., Dukarska D. Water Resistant Plywood of Increased Elasticity Produced from European Wood Species. Wood Res. 2020;65:111–124. doi: 10.37763/wr.1336-4561/65.1.111124. DOI
Dieste A., Krause A., Bollmus S., Militz H. Physical and Mechanical Properties of Plywood Produced with 1.3-Dimethylol-4.5-Dihydroxyethyleneurea (DMDHEU)-Modified Veneers of Betula sp. and Fagus Sylvatica. Holz Roh-Werkst. 2008;66:281–287. doi: 10.1007/s00107-008-0247-3. DOI
Lohmann U. Holz Handbuch. DRW; Echterdingen-Leinenfelden, Germany: 2010. pp. 46–47.
Réh R., Krišťák Ľ., Sedliačik J., Bekhta P., Božiková M., Kunecová D., Vozárová V., Tudor E.M., Antov P., Savov V. Utilization of Birch Bark as an Eco-Friendly Filler in Urea-Formaldehyde Adhesives for Plywood Manufacturing. Polymers. 2021;13:511. doi: 10.3390/polym13040511. PubMed DOI PMC
Bal B.C., Bektaþ Ý. Some Mechanical Properties of Plywood Produced from Eucalyptus, Beech, and Poplar Veneer. Maderas. Cienc. Tecnol. 2014;16:99–108. doi: 10.4067/S0718-221X2014005000009. DOI
Plywood—Bonding Quality—Part 2 Requierments. European Committee for Standardization; Brussels, Belgium: 2005.
Xi X., Pizzi A., Frihart C.R., Lorenz L., Gerardin C. Tannin Plywood Bioadhesives with Non-Volatile Aldehydes Generation by Specific Oxidation of Mono- and Disaccharides. Int. J. Adhes. Adhes. 2020;98:102499. doi: 10.1016/j.ijadhadh.2019.102499. DOI
Hafiz N.L.M., Tahir P.M.D., Hua L.S., Abidin Z.Z., Sabaruddin F.A., Yunus N.M., Abdullah U.H., Abdul Khalil H.P.S. Curing and Thermal Properties of Co-Polymerized Tannin Phenol-Formaldehyde Resin for Bonding Wood Veneers. J. Mater. Res. Technol. 2020;9:6994–7001. doi: 10.1016/j.jmrt.2020.05.029. DOI
Pizzi A., Scharfetter H.O. The Chemistry and Development of Tannin-based Adhesives for Exterior Plywood. J. Appl. Polym. Sci. 1978;22:1745–1761. doi: 10.1002/app.1978.070220623. DOI
Ayla C., Parameswaran N. Macro- and Microtechnological Studies on Beechwood Panels Bonded with Pinus Brutia Bark Tannin. Holz Roh-Werkst. 1980;38:449–459. doi: 10.1007/BF02610428. DOI
Ferreira É.D.S., Lelis R.C.C., Brito E.D.O., Iwakiri S. Use of Tannin from Pinus oocarpa Bark for Manufacture of Plywood; Proceedings of the LI International Convention of Society of Wood Science and Technology; Concepción, Chile. 10–12 November 2008; pp. 10–12.
Sedliačik J., Bekhta P., Potapova O. Technology of Low-Temperature Production of Plywood Bonded with Modified Phenol-Formaldehyde Resin. Wood Res. 2010;55:123–130.
Moubarik A., Pizzi A., Allal A., Charrier F., Charrier B. Cornstarch and Tannin in Phenol-Formaldehyde Resins for Plywood Production. Ind. Crops Prod. 2009;30:188–193. doi: 10.1016/j.indcrop.2009.03.005. DOI
Stefani P.M., Peña C., Ruseckaite R.A., Piter J.C., Mondragon I. Processing Conditions Analysis of Eucalyptus Globulus Plywood Bonded with Resol-Tannin Adhesives. Bioresour. Technol. 2008;99:5977–5980. doi: 10.1016/j.biortech.2007.10.013. PubMed DOI