Influence of Adhesive Systems on the Mechanical and Physical Properties of Flax Fiber Reinforced Beech Plywood
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34577987
PubMed Central
PMC8469923
DOI
10.3390/polym13183086
PII: polym13183086
Knihovny.cz E-zdroje
- Klíčová slova
- fiber reinforced plywood, flax fiber, wood-based composite,
- Publikační typ
- časopisecké články MeSH
In order to improve the acceptance of broader industrial application of flax fiber reinforced beech (Fagus sylvatica L.) plywood, five different industrial applicated adhesive systems were tested. Epoxy resin, urea-formaldehyde, melamine-urea formaldehyde, isocyanate MDI prepolymer, and polyurethane displayed a divergent picture in improving the mechanical properties-modulus of elasticity, modulus of rupture, tensile strength, shear strength and screw withdrawal resistance-of flax fiber-reinforced plywood. Epoxy resin is well suited for flax fiber reinforcement, whereas urea-formaldehyde, melamine urea-formaldehyde, and isocyanate prepolymer improved modulus of elasticity, modulus of rupture, shear strength, and screw withdrawal resistance, but lowered tensile strength. Polyurethane lowered the mechanical properties of flax fiber reinforced plywood. Flax fiber reinforced epoxy resin bonded plywood exceeded glass fiber reinforced plywood in terms of shear strength, modulus of elasticity, and modulus of rupture.
Zobrazit více v PubMed
Mahut J., Reh R. Plywood and Decorative Veneers. Technická Univerzita vo Zvolene; Zvolen, Slovakia: 2007.
Stark N.M., Cai Z., Carll C. Wood Handbook—Wood as an Engineering Material. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory; Madison, WI, USA: 2010. Chapter 11—Wood-Based Composite Materials Panel Products, Glued-Laminated Timber, Structural Materials. General Technical Report FPL-GTR-282.
Paulitsch M., Barbu M.C. Holzwerkstoffe der Moderne. DRW Verlag Weinbrenner; Leinfelden-Echterdingen, Germany: 2015.
Jorda J.S., Barbu M.C., Kral P. Natural fiber reinforced veneer based products. Pro Ligno. 2019;15:206–211.
Laufenberg T.L., Rowlands R.E., Krueger G.P. Economic Feasibility of Synthetic Fiber Reinforced Laminated Veneer Lumber (Lvl) For. Prod. J. 1984;34:15–22.
Bal B.C., Bektaş I., Mengeloğlu F., Karakuş K., Demir H. Ökkeş Some technological properties of poplar plywood panels reinforced with glass fiber fabric. Constr. Build. Mater. 2015;101:952–957. doi: 10.1016/j.conbuildmat.2015.10.152. DOI
Bal B.C. Propriedades de fixação de parafusos e pregos em painéis compensados de madeira reforçados com tecido de fibra de vidro. Cerne. 2017;23:11–18. doi: 10.1590/01047760201723012210. DOI
Liu Y., Guan M., Chen X., Zhang Y., Zhou M. Flexural properties evaluation of carbon-fiber fabric reinforced poplar/eucalyptus composite plywood formwork. Compos. Struct. 2019;224:111073. doi: 10.1016/j.compstruct.2019.111073. DOI
Auriga R., Gumowska A., Szymanowski K., Wronka A., Robles E., Ocipka P., Kowaluk G. Performance properties of plywood composites reinforced with carbon fibers. Compos. Struct. 2020;248:112533. doi: 10.1016/j.compstruct.2020.112533. DOI
Guan M., Liu Y., Zhang Z. Evaluation of bending performance of carbon fiber-reinforced eucalyptus/poplar composite plywood by digital image correlation and FEA analysis. J. Mater. Sci. 2020;55:8388–8402. doi: 10.1007/s10853-020-04584-9. DOI
Baley C., Bourmaud A., Davies P. Eighty years of composites reinforced by flax fibres: A historical review. Compos. Part A Appl. Sci. Manuf. 2021;144:106333. doi: 10.1016/j.compositesa.2021.106333. DOI
Speranzini E., Tralascia S. Engineered lumber: LVL and solid wood reinforced with natural fibres; Proceedings of the WCTE 2010, World Conference on Timber Engineering; Trentino, Italy. 20–24 June 2010; pp. 1685–1690.
Moezzipour B., Ahmadi M. Physical and mechanical properties of reinforced ply wood with natural fibers. J. Indian Acad. Wood Sci. 2017;14:70–73. doi: 10.1007/s13196-017-0189-7. DOI
Kramár S., Mayer A.K., Schöpper C., Mai C. Use of basalt scrim to enhance mechanical properties of particleboards. Constr. Build. Mater. 2020;238:117769. doi: 10.1016/j.conbuildmat.2019.117769. DOI
Jorda J., Kain G., Barbu M.-C., Haupt M., Krišťák L. Investigation of 3D-Moldability of Flax Fiber Reinforced Beech Plywood. Polymers. 2020;12:2852. doi: 10.3390/polym12122852. PubMed DOI PMC
Valdes M., Giaccu G.F., Meloni D., Concu G. Reinforcement of maritime pine cross-laminated timber panels by means of natural flax fibers. Constr. Build. Mater. 2020;233:117741. doi: 10.1016/j.conbuildmat.2019.117741. DOI
EN 323 Wood-Based Panels—Determination of Density. European Committee for Standardization; Brussels, Belgium: 2005.
EN 322 Wood-Based Panels—Determination of Moisture Content. European Committee for Standardization; Brussels, Belgium: 2005.
DIN 52377 Prüfung von Sperrholz—Bestimmung des Zug-Elastizitätsmoduls und der Zugfestigkeit. Deutsches Institut für Normung; Berlin, Germany: 2016.
EN 314-1 Plywood—Bonding Quality—Test Methods. European Committee for Standardization; Brussels, Belgium: 2005.
EN 314-2 Plywood—Bonding Quality—Part 2—Requierments. European Committee for Standardization; Brussels, Belgium: 2005.
EN 310 Wood-Based Panels—Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization; Brussels, Belgium: 2005.
EN 320 Particleboards and Fibreboards—Determination of Resistance to Axial Withdrawal of Screws. European Committee for Standardization; Brussels, Belgium: 2011.
Wagenführ A., Scholz F. Taschenbuch der Holztechnik. Carl Hanser Verlag; München, Germany: 2008.
Kollmann F. Anatomie und Pathologie, Chemie, Physik Elastizität und Festigkeit. Springer; Berlin/Heidelberg, Germany: 1951.
Aydin I., Colakoglu G., Colak S., Demirkir C. Effects of moisture content on formaldehyde emission and mechanical properties of plywood. Build. Environ. 2006;41:1311–1316. doi: 10.1016/j.buildenv.2005.05.011. DOI
Niemz P. Physik des Holzes und der Holzwerkstoffe. DRW Verlag Weinbrenner; Leinfelden-Echterdingen, Germany: 1993.
Bekhta P., Salca E.-A., Lunguleasa A. Some properties of plywood panels manufactured from combinations of thermally densified and non-densified veneers of different thicknesses in one structure. J. Build. Eng. 2019;29:101116. doi: 10.1016/j.jobe.2019.101116. DOI
Li W., Zhang Z., Zhou G., Leng W., Mei C. Understanding the interaction between bonding strength and strain distribution of plywood. Int. J. Adhes. 2020;98:102506. doi: 10.1016/j.ijadhadh.2019.102506. DOI
Sbardella F., Lilli M., Seghini M., Bavasso I., Touchard F., Chocinski-Arnault L., Rivilla I., Tirillò J., Sarasini F. Interface tailoring between flax yarns and epoxy matrix by ZnO nanorods. Compos. Part A Appl. Sci. Manuf. 2021;140:106156. doi: 10.1016/j.compositesa.2020.106156. DOI
Dodangeh F., Dorraji M.S., Rasoulifard M., Ashjari H. Synthesis and characterization of alkoxy silane modified polyurethane wood adhesive based on epoxidized soybean oil polyester polyol. Compos. Part B Eng. 2020;187:107857. doi: 10.1016/j.compositesb.2020.107857. DOI
Somarathna H., Raman S., Mohotti D., Mutalib A., Badri K. The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review. Constr. Build. Mater. 2018;190:995–1014. doi: 10.1016/j.conbuildmat.2018.09.166. DOI
Martínez L.M.T., Kharissova O.V., Kharisov B.I., editors. Handbook of Ecomaterials. Springer Nature; Cham, Switzerland: 2019.
Lavalette A., Cointe A., Pommier R., Danis M., Delisée C., Legrand G. Experimental design to determine the manufacturing parameters of a green-glued plywood panel. Eur. J. Wood Wood Prod. 2016;74:543–551. doi: 10.1007/s00107-016-1015-4. DOI
Hübner U., Rasser M., Schickhofer G. Withdrawal capacity of screws in European ash (Fraxinus excelsior L.); Proceedings of the WCTE 2010, World Conference on Timber Engineering; Trentino, Italy. 20–24 June 2010; pp. 241–249.
Liu Y., Guan M. Selected physical, mechanical, and insulation properties of carbon fiber fabric-reinforced composite plywood for carriage floors. Eur. J. Wood Wood Prod. 2019;77:995–1007. doi: 10.1007/s00107-019-01467-y. DOI
Maleki S., Najafi S.K., Ebrahimi G., Ghofrani M. Withdrawal resistance of screws in structural composite lumber made of poplar (Populus deltoides) Constr. Build. Mater. 2017;142:499–505. doi: 10.1016/j.conbuildmat.2017.03.039. DOI
Réh R., Krišťák Ľ., Sedliačik J., Bekhta P., Božiková M., Kunecová D., Vozárová V., Tudor E., Antov P., Savov V. Utilization of Birch Bark as an Eco-Friendly Filler in Urea-Formaldehyde Adhesives for Plywood Manufacturing. Polymers. 2021;13:511. doi: 10.3390/polym13040511. PubMed DOI PMC