Investigation of 3D-Moldability of Flax Fiber Reinforced Beech Plywood
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-18-0378, APVV-19-0269, and VEGA 1/0717/19
Slovak Research and Development Agency
PubMed
33260429
PubMed Central
PMC7760900
DOI
10.3390/polym12122852
PII: polym12122852
Knihovny.cz E-zdroje
- Klíčová slova
- natural fiber reinforcement, plywood, veneer 3D moldability,
- Publikační typ
- časopisecké články MeSH
The current work deals with three dimensionally molded plywood formed parts. These are prepared in two different geometries using cut-outs and relief cuts in the areas of the highest deformation. Moreover, the effect of flax fiber reinforcement on the occurrence and position of cracks, delamination, maximum load capacity, and on the modulus of elasticity is studied. The results show that designs with cut-outs are to be preferred when molding complex geometries and that flax fiber reinforcement is a promising way of increasing load capacity and stiffness of plywood formed parts by respectively 76 and 38% on average.
Zobrazit více v PubMed
Mahut J., Reh R. Plywood and Decorative Veneers. Technical University of Zvolen; Zvolen, Slovakia: 2007.
Stark N.M., Cai Z., Carll C. Wood Handbook—Wood as an Engineering Material. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory; Madison, WI, USA: 2010. Chapter 11—Wood-Based-Composite Materials and Panel Products, Glued Laminated Timber, Structural Materials.
Panic L., Hodzic A., Nezirevic E. Modern and sophisticated processes of 3D veneer plywood bending. Acta Tech. Corviniensis Bull. Eng. 2016;9:2067–3809.
Muthuraj R., Misra M., Defersha F.M., Mohanty A.K. Influence of processing parameters on the impact strength of biocomposites: A statistical approach. Compos. Part A Appl. Sci. Manuf. 2016;83:120–129. doi: 10.1016/j.compositesa.2015.09.003. DOI
Percin O., Altunok M. Some physical and mechanical properties of laminated veneer lumber reinforced with carbon fiber using heat-treated beech veneer. Holz Roh Werkst. 2017;75:193–201. doi: 10.1007/s00107-016-1125-z. DOI
Liu H., Luo B., Shen S., Liu H. Design and mechanical tests of basalt fiber cloth with MAH grafted reinforced bamboo and poplar veneer composite. Holz Roh Werkst. 2018;77:271–278. doi: 10.1007/s00107-018-1378-9. DOI
Auriga R., Gumowska A., Szymanowski K., Wronka A., Robles E., Ocipka P., Kowaluk G. Performance properties of plywood composites reinforced with carbon fibers. Compos. Struct. 2020;248:112533. doi: 10.1016/j.compstruct.2020.112533. DOI
Liu Y., Guan M., Chen X., Zhang Y., Zhou M. Flexural properties evaluation of carbon-fiber fabric reinforced poplar/eucalyptus composite plywood formwork. Compos. Struct. 2019;224:111073. doi: 10.1016/j.compstruct.2019.111073. DOI
Xu H., Nakao T., Tanaka C., Yoshinobu M., Katayama H. Effects of fiber length and orientation on elasticity of fiber-reinforced plywood. J. Wood Sci. 1998;44:343–347. doi: 10.1007/BF01130445. DOI
Rowlands R.E., Deweghe R.P., Laufenberg T.L., Krueger G.P. Fiber-reinforced wood composites. Wood Fiber Sci. 1986;18:39–57.
Bal B.C., Bektaş I., Mengeloğlu F., Karakuş K., Demir H.Ö. Some technological properties of poplar plywood panels reinforced with glass fiber fabric. Constr. Build. Mater. 2015;101:952–957. doi: 10.1016/j.conbuildmat.2015.10.152. DOI
Sorieul M., Dickson A.R., Hill S.J., Pearson H. Plant Fibre: Molecular Structure and Biomechanical Properties, of a Complex Living Material, Influencing Its Deconstruction towards a Biobased Composite. Materials. 2016;9:618. doi: 10.3390/ma9080618. PubMed DOI PMC
Ticoalu A., Aravinthan T., Cardona F. A Reviewof Current Development in Natural Fiber A Review of Current Development in Natural Fiber Composites for Structural and Infrastructure Applications; Proceedings of the Southern Region Engineering Conference; Toowoomba, Australia. 11–12 November 2010.
Šedivka P., Bomba J., Böhm M., Zeidler A. Determination of Strength Characteristics of Construction Timber Strengthened with Carbon and Glass Fibre Composite Using a Destructive Method. Bioresources. 2015;10:4674–4685. doi: 10.15376/biores.10.3.4674-4685. DOI
Joshi S., Drzal L., Mohanty A., Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A Appl. Sci. Manuf. 2004;35:371–376. doi: 10.1016/j.compositesa.2003.09.016. DOI
Borri A., Corradi M., Speranzini E. Reinforcement of wood with natural fibers. Compos. Part B Eng. 2013;53:1–8. doi: 10.1016/j.compositesb.2013.04.039. DOI
Sam-Brew S., Smith G. Flax and Hemp fiber-reinforced particleboard. Ind. Crops Prod. 2015;77:940–948. doi: 10.1016/j.indcrop.2015.09.079. DOI
Mohanty A.K., Misra M., Hinrichsen G. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 2000;276:1–24. doi: 10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W. DOI
Goudenhooft C., Bourmaud A., Baley C. Flax (Linum usitatissimum L.) Fibers for Composite Reinforcement: Exploring the Link between Plant Growth, Cell Walls Development, and Fiber Properties. Front. Plant Sci. 2019;10:411. doi: 10.3389/fpls.2019.00411. PubMed DOI PMC
Böhm M., Brejcha V., Jerman M., Černý R. Bending Characteristics of Fiber-Reinforced Composite with Plywood Balsa Core; Proceedings of the International Conference of Computational Methods in Sciences and Engineering 2019 (ICCMSE-2019); Rhodes, Greece. 1–5 May 2019; p. 070006.
Papadopoulos A.N., Hague J.R. The potential for using flax (Linum usitatissimum L.) shiv as a lignocellulosic raw material for particleboard. Ind. Crops Prod. 2003;17:143–147. doi: 10.1016/S0926-6690(02)00094-8. DOI
Susainathan J., Eyma F., De Luycker E., Cantarel A., Castanié B. Experimental investigation of impact behavior of wood-based sandwich structures. Compos. Part A Appl. Sci. Manuf. 2018;109:10–19. doi: 10.1016/j.compositesa.2018.02.029. DOI
Susainathan J., Eyma F., De Luycker E., Cantarel A., Castanier B. Manufacturing and quasi-static bending behavior of wood-based sandwich structures. Compos. Struct. 2017;182:487–504. doi: 10.1016/j.compstruct.2017.09.034. DOI
Mathijsen D. The renaissance of flax fibers. Reinf. Plast. 2018;62:138–147. doi: 10.1016/j.repl.2017.11.020. DOI
Prabhakaran S., Krishnaraj V., Sharma S., Senthilkumar M., Jegathishkumar R., Zitoune R. Experimental study on thermal and morphological analyses of green composite sandwich made of flax and agglomerated cork. J. Therm. Anal. Calorim. 2019;139:3003–3012. doi: 10.1007/s10973-019-08691-x. DOI
Jorda J.S., Barbu M.C., Kral P. Natural fiber reinforced veneer based products. Pro Ligno. 2019;15:206–219.
Fekiac J., Gáborík J. Formability of Radial and Tangential Beech Veneers. Annals of Warsaw University of Life Sciences; Warsaw, Poland: 2016. pp. 191–197.
Wagenführ A., Buchelt B. Untersuchungen zum Materialverhalten beim dreidimensionalen Formen von Furnier. Holztechnologie. 2005;46:13–19.
Gaff M., Gašparík M. 3D Molding of Veneers by Mechanical and Pneumatic Methods. Materials. 2017;10:321. doi: 10.3390/ma10030321. PubMed DOI PMC
Wagenführ A., Buchelt B., Pfriem A. Material behaviour of veneer during multidimensional moulding. Holz Roh Werkst. 2005;64:83–89. doi: 10.1007/s00107-005-0008-5. DOI
Langova N., Joscak P., Mozuchova M., Trencanova L. Analysis the effects of bending load of veneers for purposes of planar moulding. Ann. Wars. Univ. Life Sci. 2013;83:173–178.
Gaff M., Gáborík J. Evaluation of Wood Surface Quality after 3D Molding of Wood by Pressing. Bioresources. 2014;9:4468–4476. doi: 10.15376/biores.9.3.4468-4476. DOI
Fekiac J., Gáborík J., Smidriakova M. 3D formability of moistened and steamed veneers. Acta Fac. Xylologiae Zvolen. 2016;58:15–26.
Zemiar J., Fekiac J., Gaborik J., Petro A. Three-dimensional formability of rolled, pressed, and plasticized veneers. Ann. Wars. Univ. Life Sci. 2013;84:339–343.
Zerbst D., Affronti E., Gereke T., Buchelt B., Clauß S., Merklein M., Cherif C. Experimental analysis of the forming behavior of ash wood veneer with nonwoven backings. Holz Roh Werkst. 2020;78:321–331. doi: 10.1007/s00107-020-01494-0. DOI
United Nations Economic Commission for Europe Regulation No 17 of the Economic Commission for Europe of the United Nations (UN/ECE)—Uniform Provisions Concerning the Approval of Vehicles with Regard to the Seats, Their Anchorages and Any Head Restraints. [(accessed on 29 October 2020)]; Available online: https://op.europa.eu/en/publication-detail/-/publication/4d5ab93c-7d45-4b3a-b49f-b10b6476b5df.
European Committee for Standardization . EN 310:2005 Wood Based Panels—Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization; Brussels, Belgium: 2005.
Schürmann H. Konstruieren Mit Faser-Kunststoff-Verbunden. 2nd ed. Springer; Berlin, Germany: 2007.
Wagenführ R. Holzatlas. Carl Hanser Verlag GmbH & Co. KG; München, Germany: 2006.
Kollmann F. Technologie des Holzes und der Holzwerkstoffe. Springer; Berlin/Heidelberg, Germany: 1955.
Comsa G.N. Dimensional and geometrical optimization of structures and materials for curved or molded chair furniture; Proceedings of the 3rd International Conference on Advanced Composite Materials Engineering COMAT; Brasov, Romania. 27–29 October 2010.