Measurement Induced Synthesis of Coherent Quantum Batteries
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-19189S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
19-19189S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
731473
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.1.01/0.0/0.0/16_026/0008460
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
31873161
PubMed Central
PMC6928017
DOI
10.1038/s41598-019-56158-8
PII: 10.1038/s41598-019-56158-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Quantum coherence represented by a superposition of energy eigenstates is, together with energy, an important resource for quantum technology and thermodynamics. Energy and quantum coherence however, can be complementary. The increase of energy can reduce quantum coherence and vice versa. Recently, it was realized that steady-state quantum coherence could be autonomously harnessed from a cold environment. We propose a conditional synthesis of N independent two-level systems (TLS) with partial quantum coherence obtained from an environment to one coherent system using a measurement able to increase both energy and coherence simultaneously. The measurement process acts here as a Maxwell demon synthesizing the coherent energy of individual TLS to one large coherent quantum battery. The measurement process described by POVM elements is diagonal in energy representation and, therefore, it does not project on states with quantum coherence at all. We discuss various strategies and their efficiency to reach large coherent energy of the battery. After numerical optimization and proof-of-principle tests, it opens way to feasible repeat-until-success synthesis of coherent quantum batteries from steady-state autonomous coherence.
Zobrazit více v PubMed
Millen J, Xuereb A. The rise of the quantum machines. Physics World. 2016;29:23–26. doi: 10.1088/2058-7058/29/1/30. DOI
Kammerlander P, Anders J. Coherence and measurement in quantum thermodynamics. Scientific Reports. 2016;6:22174. doi: 10.1038/srep22174. PubMed DOI PMC
Alicki R, Fannes M. Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E. 2013;87:042123. doi: 10.1103/PhysRevE.87.042123. PubMed DOI
Binder Felix C, Vinjanampathy Sai, Modi Kavan, Goold John. Quantacell: powerful charging of quantum batteries. New Journal of Physics. 2015;17(7):075015. doi: 10.1088/1367-2630/17/7/075015. DOI
Binder F, Vinjanampathy S, Modi K, Goold J. Quantum thermodynamics of general quantum processes. Phys. Rev. E. 2015;91:032119. doi: 10.1103/PhysRevE.91.032119. PubMed DOI
Campaioli F, et al. Enhancing the charging power of quantum batteries. Phys. Rev. Lett. 2017;118:150601. doi: 10.1103/PhysRevLett.118.150601. PubMed DOI
Elouard C, Jordan AN. Efficient quantum measurement engines. Phys. Rev. Lett. 2018;120:260601. doi: 10.1103/PhysRevLett.120.260601. PubMed DOI
Buffoni L, Solfanelli A, Verrucchi P, Cuccoli A, Campisi M. Quantum measurement cooling. Phys. Rev. Lett. 2019;122:070603. doi: 10.1103/PhysRevLett.122.070603. PubMed DOI
Perarnau-Llobet M, et al. Extractable work from correlations. Phys. Rev. X. 2015;5:041011. doi: 10.1103/PhysRevX.5.041011. DOI
Lostaglio M, Korzekwa K, Jennings D, Rudolph T. Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X. 2015;5:021001. doi: 10.1103/PhysRevX.5.021001. DOI
Kwon H, Jeong H, Jennings D, Yadin B, Kim MS. Clock–work trade-off relation for coherence in quantum thermodynamics. Phys. Rev. Lett. 2018;120:150602. doi: 10.1103/PhysRevLett.120.150602. PubMed DOI
Henao I, Serra RM. Role of quantum coherence in the thermodynamics of energy transfer. Phys. Rev. E. 2018;97:062105. doi: 10.1103/PhysRevE.97.062105. PubMed DOI
Guarnieri G, Kolář M, Filip R. Steady-state coherences by composite system-bath interactions. Phys. Rev. Lett. 2018;121:070401. doi: 10.1103/PhysRevLett.121.070401. PubMed DOI
Ferraro D, Campisi M, Andolina GM, Pellegrini V, Polini M. High-power collective charging of a solid-state quantum battery. Phys. Rev. Lett. 2018;120:117702. doi: 10.1103/PhysRevLett.120.117702. PubMed DOI
Le TP, Levinsen J, Modi K, Parish MM, Pollock FA. Spin-chain model of a many-body quantum battery. Phys. Rev. A. 2018;97:022106. doi: 10.1103/PhysRevA.97.022106. DOI
Manzano G, Silva R, Parrondo JMR. Autonomous thermal machine for amplification and control of energetic coherence. Phys. Rev. E. 2019;99:042135. doi: 10.1103/PhysRevE.99.042135. PubMed DOI
Skrzypczyk P, Short AJ, Popescu S. Work extraction and thermodynamics for individual quantum systems. Nature Communications. 2014;5:4185. doi: 10.1038/ncomms5185. PubMed DOI
Hardal AUC, Müstecaplıoǧlu OE. Superradiant quantum heat engine. Scientific Reports. 2015;5:12953. doi: 10.1038/srep12953. PubMed DOI PMC
Manzano G, Galve F, Zambrini R, Parrondo JMR. Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E. 2016;93:052120. doi: 10.1103/PhysRevE.93.052120. PubMed DOI
Brunner N, et al. Entanglement enhances cooling in microscopic quantum refrigerators. Phys. Rev. E. 2014;89:032115. doi: 10.1103/PhysRevE.89.032115. PubMed DOI
Uzdin R, Levy A, Kosloff R. Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X. 2015;5:031044. doi: 10.1103/PhysRevX.5.031044. DOI
Klatzow J, et al. Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 2019;122:110601. doi: 10.1103/PhysRevLett.122.110601. PubMed DOI
Greiner, W., Neise, L. & Stöcker, H. Thermodynamics and Statistical Mechanics (Springer, 1997).
Toyabe S, Sagawa T, Ueda M, Muneyuki E, Sano M. Experimental demonstration of information-to-energy conversion and validation of the generalized jarzynski equality. Nature Physics. 2010;6:988–992. doi: 10.1038/nphys1821. DOI
Koski J. V., Maisi V. F., Pekola J. P., Averin D. V. Experimental realization of a Szilard engine with a single electron. Proceedings of the National Academy of Sciences. 2014;111(38):13786–13789. doi: 10.1073/pnas.1406966111. PubMed DOI PMC
Koski JV, Maisi VF, Sagawa T, Pekola JP. Experimental observation of the role of mutual information in the nonequilibrium dynamics of a maxwell demon. Phys. Rev. Lett. 2014;113:030601. doi: 10.1103/PhysRevLett.113.030601. PubMed DOI
Vidrighin MD, et al. Photonic maxwell’s demon. Phys. Rev. Lett. 2016;116:050401. doi: 10.1103/PhysRevLett.116.050401. PubMed DOI
Cottet Nathanaël, Jezouin Sébastien, Bretheau Landry, Campagne-Ibarcq Philippe, Ficheux Quentin, Anders Janet, Auffèves Alexia, Azouit Rémi, Rouchon Pierre, Huard Benjamin. Observing a quantum Maxwell demon at work. Proceedings of the National Academy of Sciences. 2017;114(29):7561–7564. doi: 10.1073/pnas.1704827114. PubMed DOI PMC
Dillenschneider R, Lutz E. Memory erasure in small systems. Phys. Rev. Lett. 2009;102:210601. doi: 10.1103/PhysRevLett.102.210601. PubMed DOI
Araki H, Yanase MM. Measurement of quantum mechanical operators. Phys. Rev. 1960;120:622–626. doi: 10.1103/PhysRev.120.622. DOI
Navascués M, Popescu S. How energy conservation limits our measurements. Phys. Rev. Lett. 2014;112:140502. doi: 10.1103/PhysRevLett.112.140502. PubMed DOI
Baumgratz T, Cramer M, Plenio MB. Quantifying coherence. Phys. Rev. Lett. 2014;113:140401. doi: 10.1103/PhysRevLett.113.140401. PubMed DOI
Bartůšková L, et al. Optical implementation of the encoding of two qubits to a single qutrit. Phys. Rev. A. 2006;74:022325. doi: 10.1103/PhysRevA.74.022325. DOI
Miková M, et al. Carrying qubits with particles whose noninformational degrees of freedom are nonfactorable. Phys. Rev. A. 2013;87:042327. doi: 10.1103/PhysRevA.87.042327. DOI
Ciampini MA, et al. Experimental extractable work-based multipartite separability criteria. npj Quantum Information. 2017;3:10. doi: 10.1038/s41534-017-0011-9. DOI
Mancino L, et al. Experimental extractable work-based multipartite separability criteria. npj Quantum Information. 2018;4:20. doi: 10.1038/s41534-018-0069-z. DOI
Moehring DL, et al. Entanglement of single-atom quantum bits at a distance. Nature. 2007;449:68–71. doi: 10.1038/nature06118. PubMed DOI
Slodička L, et al. Atom-atom entanglement by single-photon detection. Phys. Rev. Lett. 2013;110:083603. doi: 10.1103/PhysRevLett.110.083603. PubMed DOI
Hofmann Julian, Krug Michael, Ortegel Norbert, Gérard Lea, Weber Markus, Rosenfeld Wenjamin, Weinfurter Harald. Heralded Entanglement Between Widely Separated Atoms. Science. 2012;337(6090):72–75. doi: 10.1126/science.1221856. PubMed DOI
Togan E, et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature. 2010;466:730–734. doi: 10.1038/nature09256. PubMed DOI
Hensen B, et al. Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature. 2015;526:682–686. doi: 10.1038/nature15759. PubMed DOI
Alonso J, Lutz E, Romito A. Thermodynamics of weakly measured quantum systems. Phys. Rev. Lett. 2016;116:080403. doi: 10.1103/PhysRevLett.116.080403. PubMed DOI
Mancino L, Sbroscia M, Gianani I, Roccia E, Barbieri M. Quantum simulation of single-qubit thermometry using linear optics. Phys. Rev. Lett. 2017;118:130502. doi: 10.1103/PhysRevLett.118.130502. PubMed DOI
Mancino L, et al. Geometrical bounds on irreversibility in open quantum systems. Phys. Rev. Lett. 2018;121:160602. doi: 10.1103/PhysRevLett.121.160602. PubMed DOI