Measurement Induced Synthesis of Coherent Quantum Batteries

. 2019 Dec 23 ; 9 (1) : 19628. [epub] 20191223

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31873161

Grantová podpora
19-19189S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
19-19189S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
731473 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.1.01/0.0/0.0/16_026/0008460 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)

Odkazy

PubMed 31873161
PubMed Central PMC6928017
DOI 10.1038/s41598-019-56158-8
PII: 10.1038/s41598-019-56158-8
Knihovny.cz E-zdroje

Quantum coherence represented by a superposition of energy eigenstates is, together with energy, an important resource for quantum technology and thermodynamics. Energy and quantum coherence however, can be complementary. The increase of energy can reduce quantum coherence and vice versa. Recently, it was realized that steady-state quantum coherence could be autonomously harnessed from a cold environment. We propose a conditional synthesis of N independent two-level systems (TLS) with partial quantum coherence obtained from an environment to one coherent system using a measurement able to increase both energy and coherence simultaneously. The measurement process acts here as a Maxwell demon synthesizing the coherent energy of individual TLS to one large coherent quantum battery. The measurement process described by POVM elements is diagonal in energy representation and, therefore, it does not project on states with quantum coherence at all. We discuss various strategies and their efficiency to reach large coherent energy of the battery. After numerical optimization and proof-of-principle tests, it opens way to feasible repeat-until-success synthesis of coherent quantum batteries from steady-state autonomous coherence.

Zobrazit více v PubMed

Millen J, Xuereb A. The rise of the quantum machines. Physics World. 2016;29:23–26. doi: 10.1088/2058-7058/29/1/30. DOI

Kammerlander P, Anders J. Coherence and measurement in quantum thermodynamics. Scientific Reports. 2016;6:22174. doi: 10.1038/srep22174. PubMed DOI PMC

Alicki R, Fannes M. Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E. 2013;87:042123. doi: 10.1103/PhysRevE.87.042123. PubMed DOI

Binder Felix C, Vinjanampathy Sai, Modi Kavan, Goold John. Quantacell: powerful charging of quantum batteries. New Journal of Physics. 2015;17(7):075015. doi: 10.1088/1367-2630/17/7/075015. DOI

Binder F, Vinjanampathy S, Modi K, Goold J. Quantum thermodynamics of general quantum processes. Phys. Rev. E. 2015;91:032119. doi: 10.1103/PhysRevE.91.032119. PubMed DOI

Campaioli F, et al. Enhancing the charging power of quantum batteries. Phys. Rev. Lett. 2017;118:150601. doi: 10.1103/PhysRevLett.118.150601. PubMed DOI

Elouard C, Jordan AN. Efficient quantum measurement engines. Phys. Rev. Lett. 2018;120:260601. doi: 10.1103/PhysRevLett.120.260601. PubMed DOI

Buffoni L, Solfanelli A, Verrucchi P, Cuccoli A, Campisi M. Quantum measurement cooling. Phys. Rev. Lett. 2019;122:070603. doi: 10.1103/PhysRevLett.122.070603. PubMed DOI

Perarnau-Llobet M, et al. Extractable work from correlations. Phys. Rev. X. 2015;5:041011. doi: 10.1103/PhysRevX.5.041011. DOI

Lostaglio M, Korzekwa K, Jennings D, Rudolph T. Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X. 2015;5:021001. doi: 10.1103/PhysRevX.5.021001. DOI

Kwon H, Jeong H, Jennings D, Yadin B, Kim MS. Clock–work trade-off relation for coherence in quantum thermodynamics. Phys. Rev. Lett. 2018;120:150602. doi: 10.1103/PhysRevLett.120.150602. PubMed DOI

Henao I, Serra RM. Role of quantum coherence in the thermodynamics of energy transfer. Phys. Rev. E. 2018;97:062105. doi: 10.1103/PhysRevE.97.062105. PubMed DOI

Guarnieri G, Kolář M, Filip R. Steady-state coherences by composite system-bath interactions. Phys. Rev. Lett. 2018;121:070401. doi: 10.1103/PhysRevLett.121.070401. PubMed DOI

Ferraro D, Campisi M, Andolina GM, Pellegrini V, Polini M. High-power collective charging of a solid-state quantum battery. Phys. Rev. Lett. 2018;120:117702. doi: 10.1103/PhysRevLett.120.117702. PubMed DOI

Le TP, Levinsen J, Modi K, Parish MM, Pollock FA. Spin-chain model of a many-body quantum battery. Phys. Rev. A. 2018;97:022106. doi: 10.1103/PhysRevA.97.022106. DOI

Manzano G, Silva R, Parrondo JMR. Autonomous thermal machine for amplification and control of energetic coherence. Phys. Rev. E. 2019;99:042135. doi: 10.1103/PhysRevE.99.042135. PubMed DOI

Skrzypczyk P, Short AJ, Popescu S. Work extraction and thermodynamics for individual quantum systems. Nature Communications. 2014;5:4185. doi: 10.1038/ncomms5185. PubMed DOI

Hardal AUC, Müstecaplıoǧlu OE. Superradiant quantum heat engine. Scientific Reports. 2015;5:12953. doi: 10.1038/srep12953. PubMed DOI PMC

Manzano G, Galve F, Zambrini R, Parrondo JMR. Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E. 2016;93:052120. doi: 10.1103/PhysRevE.93.052120. PubMed DOI

Brunner N, et al. Entanglement enhances cooling in microscopic quantum refrigerators. Phys. Rev. E. 2014;89:032115. doi: 10.1103/PhysRevE.89.032115. PubMed DOI

Uzdin R, Levy A, Kosloff R. Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X. 2015;5:031044. doi: 10.1103/PhysRevX.5.031044. DOI

Klatzow J, et al. Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 2019;122:110601. doi: 10.1103/PhysRevLett.122.110601. PubMed DOI

Greiner, W., Neise, L. & Stöcker, H. Thermodynamics and Statistical Mechanics (Springer, 1997).

Toyabe S, Sagawa T, Ueda M, Muneyuki E, Sano M. Experimental demonstration of information-to-energy conversion and validation of the generalized jarzynski equality. Nature Physics. 2010;6:988–992. doi: 10.1038/nphys1821. DOI

Koski J. V., Maisi V. F., Pekola J. P., Averin D. V. Experimental realization of a Szilard engine with a single electron. Proceedings of the National Academy of Sciences. 2014;111(38):13786–13789. doi: 10.1073/pnas.1406966111. PubMed DOI PMC

Koski JV, Maisi VF, Sagawa T, Pekola JP. Experimental observation of the role of mutual information in the nonequilibrium dynamics of a maxwell demon. Phys. Rev. Lett. 2014;113:030601. doi: 10.1103/PhysRevLett.113.030601. PubMed DOI

Vidrighin MD, et al. Photonic maxwell’s demon. Phys. Rev. Lett. 2016;116:050401. doi: 10.1103/PhysRevLett.116.050401. PubMed DOI

Cottet Nathanaël, Jezouin Sébastien, Bretheau Landry, Campagne-Ibarcq Philippe, Ficheux Quentin, Anders Janet, Auffèves Alexia, Azouit Rémi, Rouchon Pierre, Huard Benjamin. Observing a quantum Maxwell demon at work. Proceedings of the National Academy of Sciences. 2017;114(29):7561–7564. doi: 10.1073/pnas.1704827114. PubMed DOI PMC

Dillenschneider R, Lutz E. Memory erasure in small systems. Phys. Rev. Lett. 2009;102:210601. doi: 10.1103/PhysRevLett.102.210601. PubMed DOI

Araki H, Yanase MM. Measurement of quantum mechanical operators. Phys. Rev. 1960;120:622–626. doi: 10.1103/PhysRev.120.622. DOI

Navascués M, Popescu S. How energy conservation limits our measurements. Phys. Rev. Lett. 2014;112:140502. doi: 10.1103/PhysRevLett.112.140502. PubMed DOI

Baumgratz T, Cramer M, Plenio MB. Quantifying coherence. Phys. Rev. Lett. 2014;113:140401. doi: 10.1103/PhysRevLett.113.140401. PubMed DOI

Bartůšková L, et al. Optical implementation of the encoding of two qubits to a single qutrit. Phys. Rev. A. 2006;74:022325. doi: 10.1103/PhysRevA.74.022325. DOI

Miková M, et al. Carrying qubits with particles whose noninformational degrees of freedom are nonfactorable. Phys. Rev. A. 2013;87:042327. doi: 10.1103/PhysRevA.87.042327. DOI

Ciampini MA, et al. Experimental extractable work-based multipartite separability criteria. npj Quantum Information. 2017;3:10. doi: 10.1038/s41534-017-0011-9. DOI

Mancino L, et al. Experimental extractable work-based multipartite separability criteria. npj Quantum Information. 2018;4:20. doi: 10.1038/s41534-018-0069-z. DOI

Moehring DL, et al. Entanglement of single-atom quantum bits at a distance. Nature. 2007;449:68–71. doi: 10.1038/nature06118. PubMed DOI

Slodička L, et al. Atom-atom entanglement by single-photon detection. Phys. Rev. Lett. 2013;110:083603. doi: 10.1103/PhysRevLett.110.083603. PubMed DOI

Hofmann Julian, Krug Michael, Ortegel Norbert, Gérard Lea, Weber Markus, Rosenfeld Wenjamin, Weinfurter Harald. Heralded Entanglement Between Widely Separated Atoms. Science. 2012;337(6090):72–75. doi: 10.1126/science.1221856. PubMed DOI

Togan E, et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature. 2010;466:730–734. doi: 10.1038/nature09256. PubMed DOI

Hensen B, et al. Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature. 2015;526:682–686. doi: 10.1038/nature15759. PubMed DOI

Alonso J, Lutz E, Romito A. Thermodynamics of weakly measured quantum systems. Phys. Rev. Lett. 2016;116:080403. doi: 10.1103/PhysRevLett.116.080403. PubMed DOI

Mancino L, Sbroscia M, Gianani I, Roccia E, Barbieri M. Quantum simulation of single-qubit thermometry using linear optics. Phys. Rev. Lett. 2017;118:130502. doi: 10.1103/PhysRevLett.118.130502. PubMed DOI

Mancino L, et al. Geometrical bounds on irreversibility in open quantum systems. Phys. Rev. Lett. 2018;121:160602. doi: 10.1103/PhysRevLett.121.160602. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...