Densification of Magnesium Aluminate Spinel Using Manganese and Cobalt Fluoride as Sintering Aids
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
739566
H2020 Spreading Excellence and Widening Participation
JRP 2015/6
SAS-MOST
2/0026/17
VEGA
LTT18013 (Inter-Transfer)
Czech Ministry of Education
CEITEC 2020 (LQ1601)
Czech Ministry of Education
PubMed
31878247
PubMed Central
PMC6982000
DOI
10.3390/ma13010102
PII: ma13010102
Knihovny.cz E-zdroje
- Klíčová slova
- MgAl2O4, cobalt fluoride, grain growth, lithium fluoride, manganese fluoride, spark plasma sintering,
- Publikační typ
- časopisecké články MeSH
Highly dense magnesium aluminate spinel bodies are usually fabricated using pressure-assisted methods, such as spark plasma sintering (SPS), in the presence of lithium fluoride as a sintering aid. The present work investigates whether the addition of transition metal fluorides promotes the sintering of MgAl2O4 bodies during SPS. At the same time, such fluorides can act as a source of optically active dopants. A commercial MgAl2O4 was mixed with 0.5 wt% of LiF, MnF2, and CoF2 and, afterwards, consolidated using SPS at 1400 °C. Although MnF2 and CoF2 promote the densification as effectively as LiF, they cause significant grain growth.
CEITEC BUT Brno University of Technology Purkynova 123 62100 Brno Czech Republic
Joint Glass Centre of the IIC SAS TnUAD and FChPT STU 91150 Trencin Slovakia
Zobrazit více v PubMed
Ganesh I. A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications. Int. Mater. Rev. 2013;58:63–112. doi: 10.1179/1743280412Y.0000000001. DOI
Goldstein A. Correlation between MgAl2O4-spinel structure, processing factors and functional properties of transparent parts (progress review) J. Eur. Ceram. Soc. 2012;32:2869–2886. doi: 10.1016/j.jeurceramsoc.2012.02.051. DOI
Reimanis I., Kleebe H.-J. A Review on the Sintering and Microstructure Development of Transparent Spinel (MgAl2O4) J. Eur. Ceram. Soc. 2009;92:1472–1480. doi: 10.1111/j.1551-2916.2009.03108.x. DOI
Gilde G., Patel P., Patterson P., Blodgett D., Duncan D., Hahn D. Evaluation of Hot Pressing and Hot Isostastic Pressing Parameters on the Optical Properties of Spinel. J. Eur. Ceram. Soc. 2005;88:2747–2751. doi: 10.1111/j.1551-2916.2005.00527.x. DOI
Krell A., Waetzig K., Klimke J. Influence of the structure of MgO·nAl2O3 spinel lattices on transparent ceramics processing and properties. J. Eur. Ceram. Soc. 2012;32:2887–2898. doi: 10.1016/j.jeurceramsoc.2012.02.054. DOI
Hosseini S.M. Structural, electronic and optical properties of spinel MgAl2O4 oxide. Phys. Status Solidi. 2008;245:2800–2807. doi: 10.1002/pssb.200844142. DOI
Sickafus K.E., Wills J.M., Grimes N.W. Structure of Spinel. J. Eur. Ceram. Soc. 1999;82:3279–3292. doi: 10.1111/j.1151-2916.1999.tb02241.x. DOI
Tomita A., Sato T., Tanaka K., Kawabe Y., Shirai M., Tanaka K., Hanamura E. Luminescence channels of manganese-doped spinel. J. Lumin. 2004;109:19–24. doi: 10.1016/j.jlumin.2003.12.049. DOI
Jouini A., Yoshikawa A., Brenier A., Fukuda T., Boulon G. Optical properties of transition metal ion-doped MgAl2O4 spinel for laser application. Phys. Status Solidi C. 2007;4:1380–1383. doi: 10.1002/pssc.200673872. DOI
Hanamura E., Kawabe Y., Takashima H., Sato T., Tomita A. Optical properties of transition-metal doped spinels. J. Nonlinear Opt. Phys. Mater. 2003;12:467–473. doi: 10.1142/S0218863503001584. DOI
Sokol M., Ratzker B., Kalabukhov S., Dariel M.P., Galun E., Frage N. Transparent Polycrystalline Magnesium Aluminate Spinel Fabricated by Spark Plasma Sintering. Adv. Mater. 2018;30:1706283. doi: 10.1002/adma.201706283. PubMed DOI
Wang S.F., Zhang J., Luo D.W., Gu F., Tang D.Y., Dong Z.L., Tan G.E.B., Que W.X., Zhang T.S., Li S., et al. Transparent ceramics: Processing, materials and applications. Prog. Solid State Chem. 2013;41:20–54. doi: 10.1016/j.progsolidstchem.2012.12.002. DOI
Krell A., Klimke J., Hutzler T. Transparent compact ceramics: Inherent physical issues. Opt. Mater. 2009;31:1144–1150. doi: 10.1016/j.optmat.2008.12.009. DOI
Morita K., Kim B.-N., Yoshida H., Hiraga K. Densification behavior of a fine-grained MgAl2O4 spinel during spark plasma sintering (SPS) Scr. Mater. 2010;63:565–568. doi: 10.1016/j.scriptamat.2010.06.012. DOI
Kim J.-M., Kim H.-N., Park Y.-J., Ko J.-W., Lee J.-W., Kim H.-D. Fabrication of transparent MgAl2O4 spinel through homogenous green compaction by microfluidization and slip casting. Ceram. Int. 2015;41:13354–13360. doi: 10.1016/j.ceramint.2015.07.121. DOI
Gajdowski C., Böhmler J., Lorgouilloux Y., Lemonnier S., d’Astorg S., Barraud E., Leriche A. Influence of post-HIP temperature on microstructural and optical properties of pure MgAl2O4 spinel: From opaque to transparent ceramics. J. Eur. Ceram. Soc. 2017;37:5347–5351. doi: 10.1016/j.jeurceramsoc.2017.07.031. DOI
Sokol M., Halabi M., Kalabukhov S., Frage N. Nano-structured MgAl2O4 spinel consolidated by high pressure spark plasma sintering (HPSPS) J. Eur. Ceram. Soc. 2017;37:755–762. doi: 10.1016/j.jeurceramsoc.2016.09.037. DOI
Rubat du Merac M., Reimanis I.E., Smith C., Kleebe H.-J., Müller M.M. Effect of Impurities and LiF Additive in Hot-Pressed Transparent Magnesium Aluminate Spinel. Int. J. Appl. Ceram. Technol. 2013;10:E33–E48. doi: 10.1111/j.1744-7402.2012.02828.x. DOI
Bonnefont G., Fantozzi G., Trombert S., Bonneau L. Fine-grained transparent MgAl2O4 spinel obtained by spark plasma sintering of commercially available nanopowders. Ceram. Int. 2012;38:131–140. doi: 10.1016/j.ceramint.2011.06.045. DOI
Waetzig K., Hutzler T. Highest UV-vis transparency of MgAl2O4 spinel ceramics prepared by hot pressing with LiF. J. Eur. Ceram. Soc. 2017;37:2259–2263. doi: 10.1016/j.jeurceramsoc.2017.01.010. DOI
Rozenburg K., Reimanis I.E., Kleebe H.-J., Cook R.L. Sintering Kinetics of a MgAl2O4 Spinel Doped with LiF. J. Eur. Ceram. Soc. 2008;91:444–450. doi: 10.1111/j.1551-2916.2007.02185.x. DOI
Reimanis I.E., Kleebe H.-J. Reactions in the sintering of MgAl2O4 spinel doped with LiF. IJMR. 2007;98:1273–1278. doi: 10.3139/146.101591. DOI
Villalobos G.R., Sanghera J.S., Aggarwal I.D. Degradation of Magnesium Aluminum Spinel by Lithium Fluoride Sintering Aid. J. Eur. Ceram. Soc. 2005;88:1321–1322. doi: 10.1111/j.1551-2916.2005.00209.x. DOI
C21 Committee . Test Method for Specific Gravity of Fired Ceramic Whiteware Materials. ASTM International; West Conshohocken, PA, USA: 1988.
Maca K., Trunec M., Chmelik R. Processing and Properties of Fine-Grained Transparent MgAl2O4 Ceramics. [(accessed on 3 December 2019)]; Available online: http://www.ceramics-silikaty.cz/index.php?page=cs_detail_doi&id=502.
Chaim R., Marder R., Estournés C., Shen Z. Densification and preservation of ceramic nanocrystalline character by spark plasma sintering. Adv. Appl. Ceram. 2012;111:280–285. doi: 10.1179/1743676111Y.0000000074. DOI
Scardi P., Lutterotti L., Maggio R.D. Size-Strain and Quantitative Phase Analysis by the Rietveld Method. Adv. X-ray Anal. 1991;35:69–76. doi: 10.1154/S0376030800008685. DOI
Lutterotti L., Matthies S., Wenk H.R. MAUD: A Friendly Java Program for Material Analysis Using Diffraction. (IUCr) Newsletter; Buffalo, NY, USA: 1999. pp. 14–15.
Benameur N., Bernard-Granger G., Addad A., Raffy S., Guizard C. Sintering Analysis of a Fine-Grained Alumina–Magnesia Spinel Powder. J. Eur. Ceram. Soc. 2011;94:1388–1396. doi: 10.1111/j.1551-2916.2010.04271.x. DOI
Talimian A., Pouchly V., El-Maghraby H.F., Maca K., Galusek D. Impact of high energy ball milling on densification behaviour of magnesium aluminate spinel evaluated by master sintering curve and constant rate of heating approach. Ceram. Int. 2019;45:23467–23474. doi: 10.1016/j.ceramint.2019.08.051. DOI
Meir S., Kalabukhov S., Froumin N., Dariel M.P., Frage N. Synthesis and Densification of Transparent Magnesium Aluminate Spinel by SPS Processing. J. Eur. Ceram. Soc. 2009;92:358–364. doi: 10.1111/j.1551-2916.2008.02893.x. DOI
Rozenburg K., Reimanis I.E., Kleebe H.-J., Cook R.L. Chemical Interaction Between LiF and MgAl2O4 Spinel During Sintering. J. Eur. Ceram. Soc. 2007;90:2038–2042. doi: 10.1111/j.1551-2916.2007.01723.x. DOI
Ting C.-J., Lu H.-Y. Defect Reactions and the Controlling Mechanism in the Sintering of Magnesium Aluminate Spinel. J. Eur. Ceram. Soc. 1999;82:841–848. doi: 10.1111/j.1151-2916.1999.tb01844.x. DOI
Mordekovitz Y., Shelly L., Halabi M., Kalabukhov S., Hayun S. The Effect of Lithium Doping on the Sintering and Grain Growth of SPS-Processed, Non-Stoichiometric Magnesium Aluminate Spinel. Materials. 2016;9:481. doi: 10.3390/ma9060481. PubMed DOI PMC
Goldstein A., Loiko P., Burshtein Z., Skoptsov N., Glazunov I., Galun E., Kuleshov N., Yumashev K. Development of Saturable Absorbers for Laser Passive Q-Switching near 1.5 μm Based on Transparent Ceramic Co2+:MgAl2O4. J. Eur. Ceram. Soc. 2016;99:1324–1331. doi: 10.1111/jace.14102. DOI
Sai Q., Xia C., Rao H., Xu X., Zhou G., Xu P. Mn, Cr-co-doped MgAl2O4 phosphors for white LEDs. J. Lumin. 2011;131:2359–2364. doi: 10.1016/j.jlumin.2011.05.046. DOI
Advanced Powder Metallurgy Technologies