Densification of Magnesium Aluminate Spinel Using Manganese and Cobalt Fluoride as Sintering Aids

. 2019 Dec 24 ; 13 (1) : . [epub] 20191224

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31878247

Grantová podpora
739566 H2020 Spreading Excellence and Widening Participation
JRP 2015/6 SAS-MOST
2/0026/17 VEGA
LTT18013 (Inter-Transfer) Czech Ministry of Education
CEITEC 2020 (LQ1601) Czech Ministry of Education

Highly dense magnesium aluminate spinel bodies are usually fabricated using pressure-assisted methods, such as spark plasma sintering (SPS), in the presence of lithium fluoride as a sintering aid. The present work investigates whether the addition of transition metal fluorides promotes the sintering of MgAl2O4 bodies during SPS. At the same time, such fluorides can act as a source of optically active dopants. A commercial MgAl2O4 was mixed with 0.5 wt% of LiF, MnF2, and CoF2 and, afterwards, consolidated using SPS at 1400 °C. Although MnF2 and CoF2 promote the densification as effectively as LiF, they cause significant grain growth.

Zobrazit více v PubMed

Ganesh I. A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications. Int. Mater. Rev. 2013;58:63–112. doi: 10.1179/1743280412Y.0000000001. DOI

Goldstein A. Correlation between MgAl2O4-spinel structure, processing factors and functional properties of transparent parts (progress review) J. Eur. Ceram. Soc. 2012;32:2869–2886. doi: 10.1016/j.jeurceramsoc.2012.02.051. DOI

Reimanis I., Kleebe H.-J. A Review on the Sintering and Microstructure Development of Transparent Spinel (MgAl2O4) J. Eur. Ceram. Soc. 2009;92:1472–1480. doi: 10.1111/j.1551-2916.2009.03108.x. DOI

Gilde G., Patel P., Patterson P., Blodgett D., Duncan D., Hahn D. Evaluation of Hot Pressing and Hot Isostastic Pressing Parameters on the Optical Properties of Spinel. J. Eur. Ceram. Soc. 2005;88:2747–2751. doi: 10.1111/j.1551-2916.2005.00527.x. DOI

Krell A., Waetzig K., Klimke J. Influence of the structure of MgO·nAl2O3 spinel lattices on transparent ceramics processing and properties. J. Eur. Ceram. Soc. 2012;32:2887–2898. doi: 10.1016/j.jeurceramsoc.2012.02.054. DOI

Hosseini S.M. Structural, electronic and optical properties of spinel MgAl2O4 oxide. Phys. Status Solidi. 2008;245:2800–2807. doi: 10.1002/pssb.200844142. DOI

Sickafus K.E., Wills J.M., Grimes N.W. Structure of Spinel. J. Eur. Ceram. Soc. 1999;82:3279–3292. doi: 10.1111/j.1151-2916.1999.tb02241.x. DOI

Tomita A., Sato T., Tanaka K., Kawabe Y., Shirai M., Tanaka K., Hanamura E. Luminescence channels of manganese-doped spinel. J. Lumin. 2004;109:19–24. doi: 10.1016/j.jlumin.2003.12.049. DOI

Jouini A., Yoshikawa A., Brenier A., Fukuda T., Boulon G. Optical properties of transition metal ion-doped MgAl2O4 spinel for laser application. Phys. Status Solidi C. 2007;4:1380–1383. doi: 10.1002/pssc.200673872. DOI

Hanamura E., Kawabe Y., Takashima H., Sato T., Tomita A. Optical properties of transition-metal doped spinels. J. Nonlinear Opt. Phys. Mater. 2003;12:467–473. doi: 10.1142/S0218863503001584. DOI

Sokol M., Ratzker B., Kalabukhov S., Dariel M.P., Galun E., Frage N. Transparent Polycrystalline Magnesium Aluminate Spinel Fabricated by Spark Plasma Sintering. Adv. Mater. 2018;30:1706283. doi: 10.1002/adma.201706283. PubMed DOI

Wang S.F., Zhang J., Luo D.W., Gu F., Tang D.Y., Dong Z.L., Tan G.E.B., Que W.X., Zhang T.S., Li S., et al. Transparent ceramics: Processing, materials and applications. Prog. Solid State Chem. 2013;41:20–54. doi: 10.1016/j.progsolidstchem.2012.12.002. DOI

Krell A., Klimke J., Hutzler T. Transparent compact ceramics: Inherent physical issues. Opt. Mater. 2009;31:1144–1150. doi: 10.1016/j.optmat.2008.12.009. DOI

Morita K., Kim B.-N., Yoshida H., Hiraga K. Densification behavior of a fine-grained MgAl2O4 spinel during spark plasma sintering (SPS) Scr. Mater. 2010;63:565–568. doi: 10.1016/j.scriptamat.2010.06.012. DOI

Kim J.-M., Kim H.-N., Park Y.-J., Ko J.-W., Lee J.-W., Kim H.-D. Fabrication of transparent MgAl2O4 spinel through homogenous green compaction by microfluidization and slip casting. Ceram. Int. 2015;41:13354–13360. doi: 10.1016/j.ceramint.2015.07.121. DOI

Gajdowski C., Böhmler J., Lorgouilloux Y., Lemonnier S., d’Astorg S., Barraud E., Leriche A. Influence of post-HIP temperature on microstructural and optical properties of pure MgAl2O4 spinel: From opaque to transparent ceramics. J. Eur. Ceram. Soc. 2017;37:5347–5351. doi: 10.1016/j.jeurceramsoc.2017.07.031. DOI

Sokol M., Halabi M., Kalabukhov S., Frage N. Nano-structured MgAl2O4 spinel consolidated by high pressure spark plasma sintering (HPSPS) J. Eur. Ceram. Soc. 2017;37:755–762. doi: 10.1016/j.jeurceramsoc.2016.09.037. DOI

Rubat du Merac M., Reimanis I.E., Smith C., Kleebe H.-J., Müller M.M. Effect of Impurities and LiF Additive in Hot-Pressed Transparent Magnesium Aluminate Spinel. Int. J. Appl. Ceram. Technol. 2013;10:E33–E48. doi: 10.1111/j.1744-7402.2012.02828.x. DOI

Bonnefont G., Fantozzi G., Trombert S., Bonneau L. Fine-grained transparent MgAl2O4 spinel obtained by spark plasma sintering of commercially available nanopowders. Ceram. Int. 2012;38:131–140. doi: 10.1016/j.ceramint.2011.06.045. DOI

Waetzig K., Hutzler T. Highest UV-vis transparency of MgAl2O4 spinel ceramics prepared by hot pressing with LiF. J. Eur. Ceram. Soc. 2017;37:2259–2263. doi: 10.1016/j.jeurceramsoc.2017.01.010. DOI

Rozenburg K., Reimanis I.E., Kleebe H.-J., Cook R.L. Sintering Kinetics of a MgAl2O4 Spinel Doped with LiF. J. Eur. Ceram. Soc. 2008;91:444–450. doi: 10.1111/j.1551-2916.2007.02185.x. DOI

Reimanis I.E., Kleebe H.-J. Reactions in the sintering of MgAl2O4 spinel doped with LiF. IJMR. 2007;98:1273–1278. doi: 10.3139/146.101591. DOI

Villalobos G.R., Sanghera J.S., Aggarwal I.D. Degradation of Magnesium Aluminum Spinel by Lithium Fluoride Sintering Aid. J. Eur. Ceram. Soc. 2005;88:1321–1322. doi: 10.1111/j.1551-2916.2005.00209.x. DOI

C21 Committee . Test Method for Specific Gravity of Fired Ceramic Whiteware Materials. ASTM International; West Conshohocken, PA, USA: 1988.

Maca K., Trunec M., Chmelik R. Processing and Properties of Fine-Grained Transparent MgAl2O4 Ceramics. [(accessed on 3 December 2019)]; Available online: http://www.ceramics-silikaty.cz/index.php?page=cs_detail_doi&id=502.

Chaim R., Marder R., Estournés C., Shen Z. Densification and preservation of ceramic nanocrystalline character by spark plasma sintering. Adv. Appl. Ceram. 2012;111:280–285. doi: 10.1179/1743676111Y.0000000074. DOI

Scardi P., Lutterotti L., Maggio R.D. Size-Strain and Quantitative Phase Analysis by the Rietveld Method. Adv. X-ray Anal. 1991;35:69–76. doi: 10.1154/S0376030800008685. DOI

Lutterotti L., Matthies S., Wenk H.R. MAUD: A Friendly Java Program for Material Analysis Using Diffraction. (IUCr) Newsletter; Buffalo, NY, USA: 1999. pp. 14–15.

Benameur N., Bernard-Granger G., Addad A., Raffy S., Guizard C. Sintering Analysis of a Fine-Grained Alumina–Magnesia Spinel Powder. J. Eur. Ceram. Soc. 2011;94:1388–1396. doi: 10.1111/j.1551-2916.2010.04271.x. DOI

Talimian A., Pouchly V., El-Maghraby H.F., Maca K., Galusek D. Impact of high energy ball milling on densification behaviour of magnesium aluminate spinel evaluated by master sintering curve and constant rate of heating approach. Ceram. Int. 2019;45:23467–23474. doi: 10.1016/j.ceramint.2019.08.051. DOI

Meir S., Kalabukhov S., Froumin N., Dariel M.P., Frage N. Synthesis and Densification of Transparent Magnesium Aluminate Spinel by SPS Processing. J. Eur. Ceram. Soc. 2009;92:358–364. doi: 10.1111/j.1551-2916.2008.02893.x. DOI

Rozenburg K., Reimanis I.E., Kleebe H.-J., Cook R.L. Chemical Interaction Between LiF and MgAl2O4 Spinel During Sintering. J. Eur. Ceram. Soc. 2007;90:2038–2042. doi: 10.1111/j.1551-2916.2007.01723.x. DOI

Ting C.-J., Lu H.-Y. Defect Reactions and the Controlling Mechanism in the Sintering of Magnesium Aluminate Spinel. J. Eur. Ceram. Soc. 1999;82:841–848. doi: 10.1111/j.1151-2916.1999.tb01844.x. DOI

Mordekovitz Y., Shelly L., Halabi M., Kalabukhov S., Hayun S. The Effect of Lithium Doping on the Sintering and Grain Growth of SPS-Processed, Non-Stoichiometric Magnesium Aluminate Spinel. Materials. 2016;9:481. doi: 10.3390/ma9060481. PubMed DOI PMC

Goldstein A., Loiko P., Burshtein Z., Skoptsov N., Glazunov I., Galun E., Kuleshov N., Yumashev K. Development of Saturable Absorbers for Laser Passive Q-Switching near 1.5 μm Based on Transparent Ceramic Co2+:MgAl2O4. J. Eur. Ceram. Soc. 2016;99:1324–1331. doi: 10.1111/jace.14102. DOI

Sai Q., Xia C., Rao H., Xu X., Zhou G., Xu P. Mn, Cr-co-doped MgAl2O4 phosphors for white LEDs. J. Lumin. 2011;131:2359–2364. doi: 10.1016/j.jlumin.2011.05.046. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Advanced Powder Metallurgy Technologies

. 2020 Apr 08 ; 13 (7) : . [epub] 20200408

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...