Ruthenium under ultrafast laser excitation: Model and dataset for equation of state, conductivity, and electron-ion coupling
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31909103
PubMed Central
PMC6938810
DOI
10.1016/j.dib.2019.104980
PII: S2352-3409(19)31335-6
Knihovny.cz E-zdroje
- Klíčová slova
- Electron-phonon heat transfer, Equation of state, High electron temperature, Transition metal, Transport coefficients, Two-temperature model,
- Publikační typ
- časopisecké články MeSH
Interaction of ultrashort laser pulses with materials can bring the latter to highly non-equilibrium states, where the electronic temperature strongly differs from the ionic one. The properties of such excited material can be considerably different from those in a hot, but equilibrium state. The reliable modeling of laser-irradiated target requires careful analysis of its properties in both regimes. This paper reports a procedure which provides the equations of state of ruthenium using density functional theory calculations. The obtained data are fitted with analytical functions. The constructed equations of state are applicable in the one- and two-temperature regimes and in a wide range of densities, temperatures and pressures. The electron thermal conductivity and electron-phonon coupling factor are also calculated. The obtained analytical expressions can be used in two-temperature hydrodynamics modeling of Ru targets pumped by ultrashort laser pulses. The data is related to the research article "Similarity in ruthenium damage induced by photons with different energies: From visible light to hard X-rays" [1].
Dukhov Research Institute of Automatics Sushchevskaya 22 Moscow 127055 Russia
Institute of Physics Czech Academy of Sciences Na Slovance 2 182 21 Prague 8 Czech Republic
Institute of Plasma Physics Czech Academy of Sciences Za Slovankou 3 182 00 Prague 8 Czech Republic
Landau Institute for Theoretical Physics Russian Academy of Sciences Chernogolovka 142432 Russia
Zobrazit více v PubMed
Milov I., Lipp V., Ilnitsky D., Medvedev N., Migdal K., Zhakhovsky V., Khokhlov V., Petrov Yu, Inogamov N., Semin S. Similarity in ruthenium damage induced by photons with different energies: from visible light to hard x-rays. Appl. Surf. Sci. 2020;501 143973.
Levashov P.R., Sin‘ko G.V., Smirnov N.A., Minakov D.V., Shemyakin O.P., Khishchenko K.V. Pseudopotential and full-electron dft calculations of thermodynamic properties of electrons in metals and semiempirical equations of state. J. Phys. Condens. Matter. 2010;22(50):505501–505510. PubMed
Petrov Yu V., Inogamov N.A., Migdal K.P. Thermal conductivity and the electron-ion heat transfer coefficient in condensed media with a strongly excited electron subsystem. JETP Lett. (Engl. Transl.) 2013;97(1):20–27.
Lugovskoy A.V., Belov M.P., Krasilnikov O.M., Kh Vekilov Yu. Stability of the hcp ruthenium at high pressures from first principles. J. Appl. Phys. 2014;116(10):103507.
Girifalco L.A. first ed. Wiley; 1973. Statistical Physics of Materials.
Chelikowsky J.R., Chan C.T., Louie S.G. Theoretical study of the electronic, structural, and cohesive properties of ruthenium. Phys. Rev. B. 1986;34(10):6656–6661. PubMed
Ramji Rao R., Ramanand A. Lattice dynamics, thermal expansion, and bulk modulus of ruthenium. J. Low Temp. Phys. 1977;27(5–6):837–850.
Petrov Y.V., Migdal K.P., Inogamov N.A., Zhakhovsky V.V. Two-temperature equation of state for aluminum and gold with electrons excited by an ultrashort laser pulse. Appl. Phys. B. 2015;119(3):401.
Landau L.D., Lifshitz E.M. third ed. Butterworth-Heinemann; 2013. Statistical Physics.
Kittel C. eighth ed. John Wiley & Sons, Inc.; New York: 2005. Introduction to Solid State Physics.
Inogamov N.A., Petrov Yu V. Thermal conductivity of metals with hot electrons. J. Experim. Theor. Phys. (JETP) 2010;110(3):446–468.
Rethfeld Baerbel, Ivanov Dmitriy S., Garcia Martin E., Anisimov Sergei I. Modelling ultrafast laser ablation. J. Phys. D Appl. Phys. apr 2017;50(19) 193001.
Migdal K.P., Zhakhovsky V.V., Yanilkin A.V., Petrov YuV., Inogamov N.A. Transport properties of liquid metals and semiconductors from molecular dynamics simulation with the kubo-greenwood formula. Appl. Surf. Sci. 2019;478:818–830.
Petrov Yu V., Migdal K.P., Inogamov N.A., Anisimov S.I. Transfer processes in a metal with hot electrons excited by a laser pulse. JETP Lett. (Engl. Transl.) Sep 2016;104(6):431–439.
Kaganov M.I., Lifshitz E.M., Tanatarov L.V. Relaxation between electrons and the crystalline lattice. J. Exp. Theor. Phys. 1957;4:173–178.
Singwi K.S., Tosi M.P., Land R.H., Sjölander A. Electron correlations at metallic densities. Phys. Rev. 1968;176(2):589.
Ho C.Y., Powell B.W., Liley P.E. Thermal conductivity of the elements: a comprehensive review. J. Phys. Chem. Ref. Data. 1974;3(1)
Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169. PubMed
available for free at http://elk.sourceforge.net, elk. an all-electron full-potential linearized augmented planewave plus local orbitals [fp-(l)apw + lo] code.
Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. PubMed
Effect of Atomic-Temperature Dependence of the Electron-Phonon Coupling in Two-Temperature Model