Effect of Atomic-Temperature Dependence of the Electron-Phonon Coupling in Two-Temperature Model

. 2022 Jul 26 ; 15 (15) : . [epub] 20220726

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35897625

Grantová podpora
LM2018114, LTT17015, and EF16\_013/0001552; Grant Rubicon Science 2021-1 S, file number 019.211EN.026; project number 741.018.301 Czech Ministry of Education, Youth and Sports; Dutch Research Council (NWO); Netherlands Organization for Scientific Research, ASML, Carl Zeiss SMT, and Malvern Panalytical

Ultrafast laser irradiation of metals can often be described theoretically with the two-temperature model. The energy exchange between the excited electronic system and the atomic one is governed by the electron-phonon coupling parameter. The electron-phonon coupling depends on both, the electronic and the atomic temperature. We analyze the effect of the dependence of the electron-phonon coupling parameter on the atomic temperature in ruthenium, gold, and palladium. It is shown that the dependence on the atomic temperature induces nonlinear behavior, in which a higher initial electronic temperature leads to faster electron-phonon equilibration. Analysis of the experimental measurements of the transient thermoreflectance of the laser-irradiated ruthenium thin film allows us to draw some, albeit indirect, conclusions about the limits of the applicability of the different coupling parametrizations.

Zobrazit více v PubMed

Ng A. Outstanding Questions in Electron-Ion Energy Relaxation, Lattice Stability, and Dielectric Function of Warm Dense Matter. Int. J. Quantum Chem. 2012;112:150–160. doi: 10.1002/qua.23197. DOI

Rethfeld B., Ivanov D.S., Garcia M.E., Anisimov S.I. Modelling Ultrafast Laser Ablation. J. Phys. D: Appl. Phys. 2017;50:193001. doi: 10.1088/1361-6463/50/19/193001. DOI

Caricato A.P., Luches A., Martino M. Handbook of Nanoparticles. Springer International Publishing; Berlin/Heidelberg, Germany: 2015. Laser Fabrication of Nanoparticles; pp. 407–428.

Ashitkov S.I., Inogamov N.A., Zhakhovskii V.V., Emirov Y.N., Agranat M.B., Oleinik I.I., Anisimov S.I., Fortov V.E. Formation of Nanocavities in the Surface Layer of an Aluminum Target Irradiated by a Femtosecond Laser Pulse. JETP Lett. 2012;95:176–181. doi: 10.1134/S0021364012040042. DOI

Sugioka K., Cheng Y. Ultrafast Lasers-Reliable Tools for Advanced Materials Processing. Light Sci. Appl. 2014;3:e149. doi: 10.1038/lsa.2014.30. DOI

Fann W.S., Storz R., Tom H.W.K., Bokor J. Electron Thermalization in Gold. Phys. Rev. B. 1992;46:13592–13595. doi: 10.1103/PhysRevB.46.13592. PubMed DOI

Rethfeld B., Kaiser A., Vicanek M., Simon G. Ultrafast Dynamics of Nonequilibrium Electrons in Metals under Femtosecond Laser Irradiation. Phys. Rev. B. 2002;65:214303. doi: 10.1103/PhysRevB.65.214303. DOI

Maldonado P., Chase T., Reid A.H., Shen X., Li R.K., Carva K., Payer T., von Hoegen M.H., Sokolowski-Tinten K., Wang X.J., et al. Tracking the Ultrafast Nonequilibrium Energy Flow between Electronic and Lattice Degrees of Freedom in Crystalline Nickel. Phys. Rev. B. 2020;101:100302. doi: 10.1103/PhysRevB.101.100302. DOI

Lin Z., Zhigilei L., Celli V. Electron-Phonon Coupling and Electron Heat Capacity of Metals under Conditions of Strong Electron-Phonon Nonequilibrium. Phys. Rev. B. 2008;77:075133. doi: 10.1103/PhysRevB.77.075133. DOI

Petrov Y.V., Inogamov N.A., Migdal K.P. Thermal Conductivity and the Electron-Ion Heat Transfer Coefficient in Condensed Media with a Strongly Excited Electron Subsystem. JETP Lett. 2013;97:20–27. doi: 10.1134/S0021364013010098. DOI

Medvedev N., Milov I. Electron-Phonon Coupling in Metals at High Electronic Temperatures. Phys. Rev. B. 2020;102:064302. doi: 10.1103/PhysRevB.102.064302. PubMed DOI PMC

Anisimov S.I., Kapeliovich B.L., Perel-man T.L. Electron Emission from Metal Surfaces Exposed to Ultrashort Laser Pulses. J. Exp. Theor. Phys. 1974;39:375.

Waldecker L., Bertoni R., Ernstorfer R., Vorberger J. Electron-Phonon Coupling and Energy Flow in a Simple Metal beyond the Two-Temperature Approximation. Phys. Rev. X. 2016;6:021003. doi: 10.1103/PhysRevX.6.021003. DOI

Hopkins P.E. Influence of Inter- and Intraband Transitions to Electron Temperature Decay in Noble Metals after Short-Pulsed Laser Heating. J. Heat Transf. 2010;132:122402. doi: 10.1115/1.4002295. DOI

Medvedev N., Milov I. Contribution of Inter- and Intraband Transitions into Electron–Phonon Coupling in Metals. Eur. Phys. J. D. 2021;75:212. doi: 10.1140/epjd/s10053-021-00200-w. DOI

Sciaini G., Miller R.J.D. Femtosecond Electron Diffraction: Heralding the Era of Atomically Resolved Dynamics. Rep. Prog. Phys. 2011;74:096101. doi: 10.1088/0034-4885/74/9/096101. DOI

Kraus P.M., Zürch M., Cushing S.K., Neumark D.M., Leone S.R. The Ultrafast X-Ray Spectroscopic Revolution in Chemical Dynamics. Nat. Rev. Chem. 2018;2:82–94. doi: 10.1038/s41570-018-0008-8. DOI

Mo M., Chen Z., Glenzer S. Ultrafast Visualization of Phase Transitions in Nonequilibrium Warm Dense Matter. MRS Bull. 2021;46:694–703. doi: 10.1557/s43577-021-00149-6. DOI

Akhmetov F., Milov I., Semin S., Formisano F., Medvedev N., Sturm J.M., Zhakhovsky V.V., Makhotkin I.A., Kimel A., Ackermann M. Laser-Induced Electron Dynamics and Surface Modification in Ruthenium Thin Films. arXiv. 2022 doi: 10.48550/ARXIV.2206.08690.2206.08690 DOI

Lifshits I.M., Kaganov M.I., Tanatarov L.V. On the Theory of Radiation-Induced Changes in Metals. J. Nucl. Energy. Part A. React. Sci. 1960;12:69–78. doi: 10.1016/0368-3265(60)90010-4. DOI

Lide D.R. CRC Handbook of Chemistry and Physics. 84th ed. CRC Press; Boca Raton, FL, USA: 2003.

Petrov Y.V., Inogamov N.A., Migdal K.P. Two-Temperature Heat Conductivity of Gold. Prog. Electromagn. Res. Symp. 2015;4:2431–2435.

Petrov Y., Migdal K., Inogamov N., Khokhlov V., Ilnitsky D., Milov I., Medvedev N., Lipp V., Zhakhovsky V. Ruthenium under Ultrafast Laser Excitation: Model and Dataset for Equation of State, Conductivity, and Electron-Ion Coupling. Data Brief. 2020;28:104980. doi: 10.1016/j.dib.2019.104980. PubMed DOI PMC

Medvedev N., Tkachenko V., Lipp V., Li Z., Ziaja B. Various Damage Mechanisms in Carbon and Silicon Materials under Femtosecond X-Ray Irradiation. 4open. 2018;1:3. doi: 10.1051/fopen/2018003. DOI

Tully J.C. Molecular Dynamics with Electronic Transitions. J. Chem. Phys. 1990;93:1061. doi: 10.1063/1.459170. DOI

Tully J.C. Perspective: Nonadiabatic Dynamics Theory. J. Chem. Phys. 2012;137:22A301. doi: 10.1063/1.4757762. PubMed DOI

Mehl M.J., Papaconstantopoulos D.A. NRL Transferable Tight-Binding Parameters Periodic Table. [(accessed on 16 July 2022)]. Available online: http://esd.cos.gmu.edu/tb/tbp.html.

Papaconstantopoulos D.A., Mehl M.J. The Slater Koster Tight-Binding Method: A Computationally Efficient and Accurate Approach. J. Phys. Condens. Matter. 2003;15:R413–R440. doi: 10.1088/0953-8984/15/10/201. DOI

Koskinen P., Mäkinen V. Density-Functional Tight-Binding for Beginners. Comput. Mater. Sci. 2009;47:237–253. doi: 10.1016/j.commatsci.2009.07.013. DOI

Mehl M.J., Papaconstantopoulos D.A., Mazin I.I., Bacalis N.C., Pickett W.E. Applications of the NRL Tight-Binding Method to Magnetic Systems. J. Appl. Phys. 2001;89:6880–6882. doi: 10.1063/1.1356031. DOI

Shi H., Koskinen P., Ramasubramaniam A. Self-Consistent Charge Density-Functional Tight-Binding Parametrization for Pt-Ru Alloys. J. Phys. Chem. A. 2017;121:2497–2502. doi: 10.1021/acs.jpca.7b00701. PubMed DOI

Frenzel J., Oliveira A.F., Jardillier N., Heine T., Seifert G. Semi-Relativistic, Self-Consistent Charge Slater-Koster Tables for Density-Functional Based Tight-Binding (DFTB) for Materials Science Simulations. TU-Dresden; Dresden, Germany: 2009.

Medvedev N., Milov I., Ziaja B. Structural Stability and Electron-phonon Coupling in Two-dimensional Carbon Allotropes at High Electronic and Atomic Temperatures. Carbon Trends. 2021;5:100121. doi: 10.1016/j.cartre.2021.100121. DOI

McMillan W.L. Transition Temperature of Strong-Coupled Superconductors. Phys. Rev. 1968;167:331–344. doi: 10.1103/PhysRev.167.331. DOI

Anisimov S.I., Rethfeld B. Theory of Ultrashort Laser Pulse Interaction with a Metal. Proc. SPIE. 1997;192:192–203.

Recoules V., Clérouin J., Zérah G., Anglade P.M., Mazevet S. Effect of Intense Laser Irradiation on the Lattice Stability of Semiconductors and Metals. Phys. Rev. Lett. 2006;96:55503. doi: 10.1103/PhysRevLett.96.055503. PubMed DOI

Medvedev N., Milov I. Nonthermal Phase Transitions in Metals. Sci. Rep. 2020;10:12775. doi: 10.1038/s41598-020-69604-9. PubMed DOI PMC

Molina J.M., White T.G. A Molecular Dynamics Study of Laser-Excited Gold. Matter Radiat. Extrem. 2022;7:036901. doi: 10.1063/5.0073217. DOI

Wetta N., Pain J.C. Consistent Approach for Electrical Resistivity within Ziman’s Theory from Solid State to Hot Dense Plasma: Application to Aluminum. Phys. Rev. E. 2020;102:53209. doi: 10.1103/PhysRevE.102.053209. PubMed DOI

Mo M.Z., Chen Z., Li R.K., Dunning M., Witte B.B.L., Baldwin J.K., Fletcher L.B., Kim J.B., Ng A., Redmer R., et al. Heterogeneous to Homogeneous Melting Transition Visualized with Ultrafast Electron Diffraction. Science. 2018;360:1451–1455. doi: 10.1126/science.aar2058. PubMed DOI

Mo M.Z., Becker V., Ofori-Okai B.K., Shen X., Chen Z., Witte B., Redmer R., Li R.K., Dunning M., Weathersby S.P., et al. Determination of the Electron-Lattice Coupling Strength of Copper with Ultrafast MeV Electron Diffraction. Rev. Sci. Instrum. 2018;89:10–108. doi: 10.1063/1.5035368. PubMed DOI

Norris P.M., Caffrey A.P., Stevens R.J., Klopf J.M., McLeskey J.T., Smith A.N. Femtosecond Pump–Probe Nondestructive Examination of Materials (Invited) Rev. Sci. Instrum. 2003;74:400–406. doi: 10.1063/1.1517187. DOI

Hohlfeld J., Wellershoff S.S., Gudde J., Conrad U., Jahnke V., Matthias E., Güdde J., Conrad U., Jähnke V., Matthias E. Electron and Lattice Dynamics Following Optical Excitation of Metals. Chem. Phys. 2000;251:237–258. doi: 10.1016/S0301-0104(99)00330-4. DOI

Hostetler J.L., Smith A.N., Czajkowsky D.M., Norris P.M. Measurement of the Electron-Phonon Coupling Factor Dependence on Film Thickness and Grain Size in Au, Cr, and Al. Appl. Opt. 1999;38:3614. doi: 10.1364/AO.38.003614. PubMed DOI

Hopkins P.E., Kassebaum J.L., Norris P.M. Effects of Electron Scattering at Metal-Nonmetal Interfaces on Electron-Phonon Equilibration in Gold Films. J. Appl. Phys. 2009;105:023710. doi: 10.1063/1.3068476. DOI

Silaeva E., Saddier L., Colombier J.-P. Drude–Lorentz Model for Optical Properties of Photoexcited Transition Metals under Electron–Phonon Nonequilibrium. Appl. Sci. 2021;11:9902. doi: 10.3390/app11219902. DOI

Wang X.Y., Riffe D.M., Lee Y.-S., Downer M.C. Time-Resolved Electron-Temperature Measurement in a Highly Excited Gold Target Using Femtosecond Thermionic Emission. Phys. Rev. B. 1994;50:8016–8019. doi: 10.1103/PhysRevB.50.8016. PubMed DOI

Milov I., Zhakhovsky V., Ilnitsky D., Migdal K., Khokhlov V., Petrov Y., Inogamov N., Lipp V., Medvedev N., Ziaja B., et al. Two-Level Ablation and Damage Morphology of Ru Films under Femtosecond Extreme UV Irradiation. Appl. Surf. Sci. 2020;528:146952. doi: 10.1016/j.apsusc.2020.146952. DOI

Volkov M., Sato S.A., Schlaepfer F., Kasmi L., Hartmann N., Lucchini M., Gallmann L., Rubio A., Keller U. Attosecond Screening Dynamics Mediated by Electron Localization in Transition Metals. Nat. Phys. 2019;15:1145–1149. doi: 10.1038/s41567-019-0602-9. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...