Effect of Atomic-Temperature Dependence of the Electron-Phonon Coupling in Two-Temperature Model
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018114, LTT17015, and EF16\_013/0001552; Grant Rubicon Science 2021-1 S, file number 019.211EN.026; project number 741.018.301
Czech Ministry of Education, Youth and Sports; Dutch Research Council (NWO); Netherlands Organization for Scientific Research, ASML, Carl Zeiss SMT, and Malvern Panalytical
PubMed
35897625
PubMed Central
PMC9330834
DOI
10.3390/ma15155193
PII: ma15155193
Knihovny.cz E-zdroje
- Klíčová slova
- electron–phonon coupling, two-temperature model,
- Publikační typ
- časopisecké články MeSH
Ultrafast laser irradiation of metals can often be described theoretically with the two-temperature model. The energy exchange between the excited electronic system and the atomic one is governed by the electron-phonon coupling parameter. The electron-phonon coupling depends on both, the electronic and the atomic temperature. We analyze the effect of the dependence of the electron-phonon coupling parameter on the atomic temperature in ruthenium, gold, and palladium. It is shown that the dependence on the atomic temperature induces nonlinear behavior, in which a higher initial electronic temperature leads to faster electron-phonon equilibration. Analysis of the experimental measurements of the transient thermoreflectance of the laser-irradiated ruthenium thin film allows us to draw some, albeit indirect, conclusions about the limits of the applicability of the different coupling parametrizations.
Advanced Research Center for Nanolithography Science Park 106 1098 XG Amsterdam The Netherlands
Institute of Physics Czech Academy of Sciences Na Slovance 1999 2 18221 Prague Czech Republic
Institute of Plasma Physics Czech Academy of Sciences Za Slovankou 3 18200 Prague Czech Republic
Zobrazit více v PubMed
Ng A. Outstanding Questions in Electron-Ion Energy Relaxation, Lattice Stability, and Dielectric Function of Warm Dense Matter. Int. J. Quantum Chem. 2012;112:150–160. doi: 10.1002/qua.23197. DOI
Rethfeld B., Ivanov D.S., Garcia M.E., Anisimov S.I. Modelling Ultrafast Laser Ablation. J. Phys. D: Appl. Phys. 2017;50:193001. doi: 10.1088/1361-6463/50/19/193001. DOI
Caricato A.P., Luches A., Martino M. Handbook of Nanoparticles. Springer International Publishing; Berlin/Heidelberg, Germany: 2015. Laser Fabrication of Nanoparticles; pp. 407–428.
Ashitkov S.I., Inogamov N.A., Zhakhovskii V.V., Emirov Y.N., Agranat M.B., Oleinik I.I., Anisimov S.I., Fortov V.E. Formation of Nanocavities in the Surface Layer of an Aluminum Target Irradiated by a Femtosecond Laser Pulse. JETP Lett. 2012;95:176–181. doi: 10.1134/S0021364012040042. DOI
Sugioka K., Cheng Y. Ultrafast Lasers-Reliable Tools for Advanced Materials Processing. Light Sci. Appl. 2014;3:e149. doi: 10.1038/lsa.2014.30. DOI
Fann W.S., Storz R., Tom H.W.K., Bokor J. Electron Thermalization in Gold. Phys. Rev. B. 1992;46:13592–13595. doi: 10.1103/PhysRevB.46.13592. PubMed DOI
Rethfeld B., Kaiser A., Vicanek M., Simon G. Ultrafast Dynamics of Nonequilibrium Electrons in Metals under Femtosecond Laser Irradiation. Phys. Rev. B. 2002;65:214303. doi: 10.1103/PhysRevB.65.214303. DOI
Maldonado P., Chase T., Reid A.H., Shen X., Li R.K., Carva K., Payer T., von Hoegen M.H., Sokolowski-Tinten K., Wang X.J., et al. Tracking the Ultrafast Nonequilibrium Energy Flow between Electronic and Lattice Degrees of Freedom in Crystalline Nickel. Phys. Rev. B. 2020;101:100302. doi: 10.1103/PhysRevB.101.100302. DOI
Lin Z., Zhigilei L., Celli V. Electron-Phonon Coupling and Electron Heat Capacity of Metals under Conditions of Strong Electron-Phonon Nonequilibrium. Phys. Rev. B. 2008;77:075133. doi: 10.1103/PhysRevB.77.075133. DOI
Petrov Y.V., Inogamov N.A., Migdal K.P. Thermal Conductivity and the Electron-Ion Heat Transfer Coefficient in Condensed Media with a Strongly Excited Electron Subsystem. JETP Lett. 2013;97:20–27. doi: 10.1134/S0021364013010098. DOI
Medvedev N., Milov I. Electron-Phonon Coupling in Metals at High Electronic Temperatures. Phys. Rev. B. 2020;102:064302. doi: 10.1103/PhysRevB.102.064302. PubMed DOI PMC
Anisimov S.I., Kapeliovich B.L., Perel-man T.L. Electron Emission from Metal Surfaces Exposed to Ultrashort Laser Pulses. J. Exp. Theor. Phys. 1974;39:375.
Waldecker L., Bertoni R., Ernstorfer R., Vorberger J. Electron-Phonon Coupling and Energy Flow in a Simple Metal beyond the Two-Temperature Approximation. Phys. Rev. X. 2016;6:021003. doi: 10.1103/PhysRevX.6.021003. DOI
Hopkins P.E. Influence of Inter- and Intraband Transitions to Electron Temperature Decay in Noble Metals after Short-Pulsed Laser Heating. J. Heat Transf. 2010;132:122402. doi: 10.1115/1.4002295. DOI
Medvedev N., Milov I. Contribution of Inter- and Intraband Transitions into Electron–Phonon Coupling in Metals. Eur. Phys. J. D. 2021;75:212. doi: 10.1140/epjd/s10053-021-00200-w. DOI
Sciaini G., Miller R.J.D. Femtosecond Electron Diffraction: Heralding the Era of Atomically Resolved Dynamics. Rep. Prog. Phys. 2011;74:096101. doi: 10.1088/0034-4885/74/9/096101. DOI
Kraus P.M., Zürch M., Cushing S.K., Neumark D.M., Leone S.R. The Ultrafast X-Ray Spectroscopic Revolution in Chemical Dynamics. Nat. Rev. Chem. 2018;2:82–94. doi: 10.1038/s41570-018-0008-8. DOI
Mo M., Chen Z., Glenzer S. Ultrafast Visualization of Phase Transitions in Nonequilibrium Warm Dense Matter. MRS Bull. 2021;46:694–703. doi: 10.1557/s43577-021-00149-6. DOI
Akhmetov F., Milov I., Semin S., Formisano F., Medvedev N., Sturm J.M., Zhakhovsky V.V., Makhotkin I.A., Kimel A., Ackermann M. Laser-Induced Electron Dynamics and Surface Modification in Ruthenium Thin Films. arXiv. 2022 doi: 10.48550/ARXIV.2206.08690.2206.08690 DOI
Lifshits I.M., Kaganov M.I., Tanatarov L.V. On the Theory of Radiation-Induced Changes in Metals. J. Nucl. Energy. Part A. React. Sci. 1960;12:69–78. doi: 10.1016/0368-3265(60)90010-4. DOI
Lide D.R. CRC Handbook of Chemistry and Physics. 84th ed. CRC Press; Boca Raton, FL, USA: 2003.
Petrov Y.V., Inogamov N.A., Migdal K.P. Two-Temperature Heat Conductivity of Gold. Prog. Electromagn. Res. Symp. 2015;4:2431–2435.
Petrov Y., Migdal K., Inogamov N., Khokhlov V., Ilnitsky D., Milov I., Medvedev N., Lipp V., Zhakhovsky V. Ruthenium under Ultrafast Laser Excitation: Model and Dataset for Equation of State, Conductivity, and Electron-Ion Coupling. Data Brief. 2020;28:104980. doi: 10.1016/j.dib.2019.104980. PubMed DOI PMC
Medvedev N., Tkachenko V., Lipp V., Li Z., Ziaja B. Various Damage Mechanisms in Carbon and Silicon Materials under Femtosecond X-Ray Irradiation. 4open. 2018;1:3. doi: 10.1051/fopen/2018003. DOI
Tully J.C. Molecular Dynamics with Electronic Transitions. J. Chem. Phys. 1990;93:1061. doi: 10.1063/1.459170. DOI
Tully J.C. Perspective: Nonadiabatic Dynamics Theory. J. Chem. Phys. 2012;137:22A301. doi: 10.1063/1.4757762. PubMed DOI
Mehl M.J., Papaconstantopoulos D.A. NRL Transferable Tight-Binding Parameters Periodic Table. [(accessed on 16 July 2022)]. Available online: http://esd.cos.gmu.edu/tb/tbp.html.
Papaconstantopoulos D.A., Mehl M.J. The Slater Koster Tight-Binding Method: A Computationally Efficient and Accurate Approach. J. Phys. Condens. Matter. 2003;15:R413–R440. doi: 10.1088/0953-8984/15/10/201. DOI
Koskinen P., Mäkinen V. Density-Functional Tight-Binding for Beginners. Comput. Mater. Sci. 2009;47:237–253. doi: 10.1016/j.commatsci.2009.07.013. DOI
Mehl M.J., Papaconstantopoulos D.A., Mazin I.I., Bacalis N.C., Pickett W.E. Applications of the NRL Tight-Binding Method to Magnetic Systems. J. Appl. Phys. 2001;89:6880–6882. doi: 10.1063/1.1356031. DOI
Shi H., Koskinen P., Ramasubramaniam A. Self-Consistent Charge Density-Functional Tight-Binding Parametrization for Pt-Ru Alloys. J. Phys. Chem. A. 2017;121:2497–2502. doi: 10.1021/acs.jpca.7b00701. PubMed DOI
Frenzel J., Oliveira A.F., Jardillier N., Heine T., Seifert G. Semi-Relativistic, Self-Consistent Charge Slater-Koster Tables for Density-Functional Based Tight-Binding (DFTB) for Materials Science Simulations. TU-Dresden; Dresden, Germany: 2009.
Medvedev N., Milov I., Ziaja B. Structural Stability and Electron-phonon Coupling in Two-dimensional Carbon Allotropes at High Electronic and Atomic Temperatures. Carbon Trends. 2021;5:100121. doi: 10.1016/j.cartre.2021.100121. DOI
McMillan W.L. Transition Temperature of Strong-Coupled Superconductors. Phys. Rev. 1968;167:331–344. doi: 10.1103/PhysRev.167.331. DOI
Anisimov S.I., Rethfeld B. Theory of Ultrashort Laser Pulse Interaction with a Metal. Proc. SPIE. 1997;192:192–203.
Recoules V., Clérouin J., Zérah G., Anglade P.M., Mazevet S. Effect of Intense Laser Irradiation on the Lattice Stability of Semiconductors and Metals. Phys. Rev. Lett. 2006;96:55503. doi: 10.1103/PhysRevLett.96.055503. PubMed DOI
Medvedev N., Milov I. Nonthermal Phase Transitions in Metals. Sci. Rep. 2020;10:12775. doi: 10.1038/s41598-020-69604-9. PubMed DOI PMC
Molina J.M., White T.G. A Molecular Dynamics Study of Laser-Excited Gold. Matter Radiat. Extrem. 2022;7:036901. doi: 10.1063/5.0073217. DOI
Wetta N., Pain J.C. Consistent Approach for Electrical Resistivity within Ziman’s Theory from Solid State to Hot Dense Plasma: Application to Aluminum. Phys. Rev. E. 2020;102:53209. doi: 10.1103/PhysRevE.102.053209. PubMed DOI
Mo M.Z., Chen Z., Li R.K., Dunning M., Witte B.B.L., Baldwin J.K., Fletcher L.B., Kim J.B., Ng A., Redmer R., et al. Heterogeneous to Homogeneous Melting Transition Visualized with Ultrafast Electron Diffraction. Science. 2018;360:1451–1455. doi: 10.1126/science.aar2058. PubMed DOI
Mo M.Z., Becker V., Ofori-Okai B.K., Shen X., Chen Z., Witte B., Redmer R., Li R.K., Dunning M., Weathersby S.P., et al. Determination of the Electron-Lattice Coupling Strength of Copper with Ultrafast MeV Electron Diffraction. Rev. Sci. Instrum. 2018;89:10–108. doi: 10.1063/1.5035368. PubMed DOI
Norris P.M., Caffrey A.P., Stevens R.J., Klopf J.M., McLeskey J.T., Smith A.N. Femtosecond Pump–Probe Nondestructive Examination of Materials (Invited) Rev. Sci. Instrum. 2003;74:400–406. doi: 10.1063/1.1517187. DOI
Hohlfeld J., Wellershoff S.S., Gudde J., Conrad U., Jahnke V., Matthias E., Güdde J., Conrad U., Jähnke V., Matthias E. Electron and Lattice Dynamics Following Optical Excitation of Metals. Chem. Phys. 2000;251:237–258. doi: 10.1016/S0301-0104(99)00330-4. DOI
Hostetler J.L., Smith A.N., Czajkowsky D.M., Norris P.M. Measurement of the Electron-Phonon Coupling Factor Dependence on Film Thickness and Grain Size in Au, Cr, and Al. Appl. Opt. 1999;38:3614. doi: 10.1364/AO.38.003614. PubMed DOI
Hopkins P.E., Kassebaum J.L., Norris P.M. Effects of Electron Scattering at Metal-Nonmetal Interfaces on Electron-Phonon Equilibration in Gold Films. J. Appl. Phys. 2009;105:023710. doi: 10.1063/1.3068476. DOI
Silaeva E., Saddier L., Colombier J.-P. Drude–Lorentz Model for Optical Properties of Photoexcited Transition Metals under Electron–Phonon Nonequilibrium. Appl. Sci. 2021;11:9902. doi: 10.3390/app11219902. DOI
Wang X.Y., Riffe D.M., Lee Y.-S., Downer M.C. Time-Resolved Electron-Temperature Measurement in a Highly Excited Gold Target Using Femtosecond Thermionic Emission. Phys. Rev. B. 1994;50:8016–8019. doi: 10.1103/PhysRevB.50.8016. PubMed DOI
Milov I., Zhakhovsky V., Ilnitsky D., Migdal K., Khokhlov V., Petrov Y., Inogamov N., Lipp V., Medvedev N., Ziaja B., et al. Two-Level Ablation and Damage Morphology of Ru Films under Femtosecond Extreme UV Irradiation. Appl. Surf. Sci. 2020;528:146952. doi: 10.1016/j.apsusc.2020.146952. DOI
Volkov M., Sato S.A., Schlaepfer F., Kasmi L., Hartmann N., Lucchini M., Gallmann L., Rubio A., Keller U. Attosecond Screening Dynamics Mediated by Electron Localization in Transition Metals. Nat. Phys. 2019;15:1145–1149. doi: 10.1038/s41567-019-0602-9. DOI