Electron-Phonon Coupling and Nonthermal Effects in Gold Nano-Objects at High Electronic Temperatures

. 2022 Jul 13 ; 15 (14) : . [epub] 20220713

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35888347

Grantová podpora
LM2018114, LTT17015, and No. EF16\_013/0001552 Czech Ministry of Education, Youth and Sports
Project 'PROMT', Grant Rubicon Science 2021-1 S, file number 019.211EN.026 Dutch Research Council (NWO)

Laser irradiation of metals is widely used in research and applications. In this work, we study how the material geometry affects electron-phonon coupling in nano-sized gold samples: an ultrathin layer, nano-rod, and two types of gold nanoparticles (cubic and octahedral). We use the combined tight-binding molecular dynamics Boltzmann collision integral method implemented within XTANT-3 code to evaluate the coupling parameter in irradiation targets at high electronic temperatures (up to Te~20,000 K). Our results show that the electron-phonon coupling in all objects with the same fcc atomic structure (bulk, layer, rod, cubic and octahedral nanoparticles) is nearly identical at electronic temperatures above Te~7000 K, independently of geometry and dimensionality. At low electronic temperatures, reducing dimensionality reduces the coupling parameter. Additionally, nano-objects under ultrafast energy deposition experience nonthermal damage due to expansion caused by electronic pressure, in contrast to bulk metal. Nano-object ultrafast expansion leads to the ablation/emission of atoms and disorders the inside of the remaining parts. These nonthermal atomic expansion and melting are significantly faster than electron-phonon coupling, forming a dominant effect in nano-sized gold.

Zobrazit více v PubMed

Sugioka K., Cheng Y. Ultrafast Lasers-Reliable Tools for Advanced Materials Processing. Light Sci. Appl. 2014;3:e149. doi: 10.1038/lsa.2014.30. DOI

Yeshchenko O.A., Golovynskyi S., Kudrya V.Y., Tomchuk A.V., Dmitruk I.M., Berezovska N.I., Teselko P.O., Zhou T., Xue B., Golovynska I., et al. Laser-Induced Periodic Ag Surface Structure with Au Nanorods Plasmonic Nanocavity Metasurface for Strong Enhancement of Adenosine Nucleotide Label-Free Photoluminescence Imaging. ACS Omega. 2020;5:14030–14039. doi: 10.1021/acsomega.0c01433. PubMed DOI PMC

Lange K., Schulz-Ruhtenberg M., Caro J. Platinum Electrodes for Oxygen Reduction Catalysis Designed by Ultrashort Pulse Laser Structuring. ChemElectroChem. 2017;4:570–576. doi: 10.1002/celc.201600630. DOI

Sher M.J., Winkler M.T., Mazur E. Pulsed-Laser Hyperdoping and Surface Texturing for Photovoltaics. MRS Bull. 2011;36:439–455. doi: 10.1557/mrs.2011.111. DOI

Koch L., Sajti L., Schwenke A., Klein S., Unger C., Gruene M., Deiwick A., Schlie S., Chichkov B. Laser-Based Micro- and Nanofabrication for Applications in Biomedicine. AIP Conf. Proc. 2012;1464:532. doi: 10.1063/1.4739907. DOI

Soares B.F., Jonsson F., Zheludev N.I. All-Optical Phase-Change Memory in a Single Gallium Nanoparticle. Phys. Rev. Lett. 2007;98:153905. doi: 10.1103/PhysRevLett.98.153905. PubMed DOI

Dinh T.-H., Medvedev N., Ishino M., Kitamura T., Hasegawa N., Otobe T., Higashiguchi T., Sakaue K., Washio M., Hatano T., et al. Controlled Strong Excitation of Silicon as a Step towards Processing Materials at Sub-Nanometer Precision. Commun. Phys. 2019;2:150. doi: 10.1038/s42005-019-0253-2. DOI

Rethfeld B., Ivanov D.S., Garcia M.E., Anisimov S.I. Modelling Ultrafast Laser Ablation. J. Phys. D Appl. Phys. 2017;50:193001. doi: 10.1088/1361-6463/50/19/193001. DOI

Medvedev N., Volkov A.E., Ziaja B. Electronic and Atomic Kinetics in Solids Irradiated with Free-Electron Lasers or Swift-Heavy Ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2015;365:437–446. doi: 10.1016/j.nimb.2015.08.063. DOI

Medvedev N., Milov I. Electron-Phonon Coupling in Metals at High Electronic Temperatures. Phys. Rev. B. 2020;102:064302. doi: 10.1103/PhysRevB.102.064302. PubMed DOI PMC

Stampfli P., Bennemann K. Dynamical Theory of the Laser-Induced Lattice Instability of Silicon. Phys. Rev. B. 1992;46:10686–10692. doi: 10.1103/PhysRevB.46.10686. PubMed DOI

Siders C.W. Detection of Nonthermal Melting by Ultrafast X-Ray Diffraction. Science. 1999;286:1340–1342. doi: 10.1126/science.286.5443.1340. PubMed DOI

Recoules V., Clérouin J., Zérah G., Anglade P.M., Mazevet S. Effect of Intense Laser Irradiation on the Lattice Stability of Semiconductors and Metals. Phys. Rev. Lett. 2006;96:55503. doi: 10.1103/PhysRevLett.96.055503. PubMed DOI

Medvedev N., Milov I. Nonthermal Phase Transitions in Metals. Sci. Rep. 2020;10:12775. doi: 10.1038/s41598-020-69604-9. PubMed DOI PMC

Medvedev N., Li Z., Tkachenko V., Ziaja B. Electron-Ion Coupling in Semiconductors beyond Fermi’s Golden Rule. Phys. Rev. B. 2017;95:014309. doi: 10.1103/PhysRevB.95.014309. DOI

Zhang H., Li C., Bevillon E., Cheng G., Colombier J.P., Stoian R. Ultrafast Destructuring of Laser-Irradiated Tungsten: Thermal or Nonthermal Process. Phys. Rev. B. 2016;94:224103. doi: 10.1103/PhysRevB.94.224103. DOI

Rousse A., Rischel C., Fourmaux S., Uschmann I., Sebban S., Grillon G., Balcou P., Förster E., Geindre J.P., Audebert P., et al. Non-Thermal Melting in Semiconductors Measured at Femtosecond Resolution. Nature. 2001;410:65–68. doi: 10.1038/35065045. PubMed DOI

Sciaini G., Harb M., Kruglik S.G., Payer T., Hebeisen C.T., Meyer zu Heringdorf F.-J., Yamaguchi M., Hoegen M.H., Ernstorfer R., Miller R.J.D. Electronic Acceleration of Atomic Motions and Disordering in Bismuth. Nature. 2009;458:56–59. doi: 10.1038/nature07788. PubMed DOI

Giret Y., Daraszewicz S.L., Duffy D.M., Shluger A.L., Tanimura K. Nonthermal Solid-to-Solid Phase Transitions in Tungsten. Phys. Rev. B. 2014;90:94103. doi: 10.1103/PhysRevB.90.094103. DOI

Murphy S.T., Daraszewicz S.L., Giret Y., Watkins M., Shluger A.L., Tanimura K., Duffy D.M. Dynamical Simulations of an Electronically Induced Solid-Solid Phase Transformation in Tungsten. Phys. Rev. B. 2015;92:134110. doi: 10.1103/PhysRevB.92.134110. DOI

Hu M., Chen J., Li Z.Y., Au L., Hartland G.V., Li X., Marquez M., Xia Y. Gold Nanostructures: Engineering Their Plasmonic Properties for Biomedical Applications. Chem. Soc. Rev. 2006;35:1084–1094. doi: 10.1039/b517615h. PubMed DOI

Atwater H.A., Polman A. Plasmonics for Improved Photovoltaic Devices. Nat. Mater. 2010;9:205–213. doi: 10.1038/nmat2629. PubMed DOI

Medvedev N., Tkachenko V., Lipp V., Li Z., Ziaja B. Various Damage Mechanisms in Carbon and Silicon Materials under Femtosecond X-Ray Irradiation. 4open. 2018;1:3. doi: 10.1051/fopen/2018003. DOI

Medvedev N., Jeschke H.O., Ziaja B. Nonthermal Phase Transitions in Semiconductors Induced by a Femtosecond Extreme Ultraviolet Laser Pulse. New J. Phys. 2013;15:15016. doi: 10.1088/1367-2630/15/1/015016. DOI

Mehl M.J., Papaconstantopoulos D.A. NRL Transferable Tight-Binding Parameters Periodic Table. [(accessed on 24 May 2022)]. Available online: http://esd.cos.gmu.edu/tb/tbp.html.

Mehl M.J., Papaconstantopoulos D.A., Mazin I.I., Bacalis N.C., Pickett W.E. Applications of the NRL Tight-Binding Method to Magnetic Systems. J. Appl. Phys. 2001;89:6880–6882. doi: 10.1063/1.1356031. DOI

Medvedev N., Milov I., Ziaja B. Structural Stability and Electron-phonon Coupling in Two-dimensional Carbon Allotropes at High Electronic and Atomic Temperatures. Carbon Trends. 2021;5:100121. doi: 10.1016/j.cartre.2021.100121. DOI

Chatzigoulas A., Karathanou K., Dellis D., Cournia Z. NanoCrystal: A Web-Based Crystallographic Tool for the Construction of Nanoparticles Based on Their Crystal Habit. J. Chem. Inf. Model. 2018;58:2380–2386. doi: 10.1021/acs.jcim.8b00269. PubMed DOI

Humphrey W., Dalke A., Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Ben-Mahfoud L., Silaeva E.P., Stoian R., Colombier J.P. Structural Instability of Transition Metals upon Ultrafast Laser Irradiation. Phys. Rev. B. 2021;104:104104. doi: 10.1103/PhysRevB.104.104104. DOI

Daraszewicz S.L., Giret Y., Naruse N., Murooka Y., Yang J., Duffy D.M., Shluger A.L., Tanimura K. Structural Dynamics of Laser-Irradiated Gold Nanofilms. Phys. Rev. B. 2013;88:184101. doi: 10.1103/PhysRevB.88.184101. DOI

Norman G.E., Starikov S.V., Stegailov V.V. Atomistic Simulation of Laser Ablation of Gold: Effect of Pressure Relaxation. J. Exp. Theor. Phys. 2012;114:792–800. doi: 10.1134/S1063776112040115. DOI

Qi W., Shen Y., Gan Y., Shen Y., Chen Z. Effect of the Hot Electron Blast Force on Ultrafast Laser Ablation of Nickel Thin Film. Appl. Opt. 2015;54:1737–1742. doi: 10.1364/AO.54.001737. DOI

Nguyen Q.L.D., Simoni J., Dorney K.M., Shi X., Ellis J.L., Brooks N.J., Hickstein D.D., Grennell A.G., Yazdi S., Campbell E.E.B., et al. Direct Observation of Enhanced Electron-Phonon Coupling in Copper Nanoparticles in the Warm-Dense Matter Regime. arXiv. 2021 doi: 10.48550/arXiv.2110.14704.2110.14704 PubMed DOI

Medvedev N., Volkov A.E. Nonthermal Acceleration of Atoms as a Mechanism of Fast Lattice Heating in Ion Tracks. J. Appl. Phys. 2022;131:225903. doi: 10.1063/5.0095724. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...