Application of Boltzmann kinetic equations to model X-ray-created warm dense matter and plasma

. 2023 Aug 21 ; 381 (2253) : 20220216. [epub] 20230703

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37393933

In this review, we describe the application of Boltzmann kinetic equations for modelling warm dense matter and plasma formed after irradiation of solid materials with intense femtosecond X-ray pulses. Classical Boltzmann kinetic equations are derived from the reduced N-particle Liouville equations. They include only single-particle densities of ions and free electrons present in the sample. The first version of the Boltzmann kinetic equation solver was completed in 2006. It could model non-equilibrium evolution of X-ray-irradiated finite-size atomic systems. In 2016, the code was adapted to study plasma created from X-ray-irradiated materials. Additional extension of the code was then also performed, enabling simulations in the hard X-ray irradiation regime. In order to avoid treatment of a very high number of active atomic configurations involved in the excitation and relaxation of X-ray-irradiated materials, an approach called 'predominant excitation and relaxation path' (PERP) was introduced. It limited the number of active atomic configurations by following the sample evolution only along most PERPs. The performance of the Boltzmann code is illustrated in the examples of X-ray-heated solid carbon and gold. Actual model limitations and further model developments are discussed. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.

Zobrazit více v PubMed

Lee RW et al. 2003. Finite temperature dense matter studies on next-generation light sources. JOSA B 20, 770-778. (10.1364/JOSAB.20.000770) DOI

Ackermann W et al. 2007. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1, 336-342. (10.1038/nphoton.2007.76) DOI

Allaria E et al. 2012. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699-704. (10.1038/nphoton.2012.233) DOI

Emma P et al. 2010. First lasing and operation of an Ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641-647. (10.1038/nphoton.2010.176) DOI

Pile D. 2011. First light from SACLA. Nat. Photon. 5, 456-457. (10.1038/nphoton.2011.178) DOI

Weise H, Decking W. 2017. Commissioning and first lasing of the European XFEL. Proc. of 38th Int. Free Electron Laser Conf. FEL2017, Sante Fe, NM, 20–25 August. Geneva, Switzerland: JACoW Publishing.

Gorkhover T et al. 2012. Nanoplasma dynamics of single large xenon clusters irradiated with superintense X-ray pulses from the Linac coherent light source free-electron laser. Phys. Rev. Lett. 108, 245005. (10.1103/PhysRevLett.108.245005) PubMed DOI

Tachibana T et al. 2015. Nanoplasma formation by high intensity hard X rays. Sci. Rep. 5, 10977. (10.1038/srep10977) PubMed DOI PMC

Inoue I et al. 2021. Atomic-scale visualization of ultrafast bond breaking in X-ray-excited diamond. Phys. Rev. Lett. 126, 117403. (10.1103/PhysRevLett.126.117403) PubMed DOI

Vinko S et al. 2012. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature 482, 59. (10.1038/nature10746) PubMed DOI

Zastrau U et al. 2014. Equilibration dynamics and conductivity of warm dense hydrogen. Phys. Rev. E 90, 013104. (10.1103/PhysRevE.90.013104) PubMed DOI

Levy A et al. 2015. The creation of large-volume, gradient-free warm dense matter with an X-ray free-electron laser. Phys. Plasm. 22, 030703. (10.1063/1.4916103) DOI

Griem H. 1997. Principles of plasma spectroscopy. Cambridge, UK: Cambridge University Press.

Rosmej FB, Lee RW. 2007. Hollow ion emission driven by pulsed intense X-ray fields. EPL 77, 24001. (10.1209/0295-5075/77/24001) DOI

Rosmej FB et al. 2010. XUV emission from autoionizing hole states induced by intense XUV-FEL at intensities up to 1017 W/cm2. J. Phys. 244, 042028. (10.1088/1742-6596/244/4/042028) DOI

Galtier E et al. 2011. Decay of cystalline order and equilibration during the solid-to-plasma transition induced by 20-fs microfocused 92-eV free-electron-laser pulses. Phys. Rev. Lett. 106, 164801. (10.1103/PhysRevLett.106.164801) PubMed DOI

Mercadier L et al. 2023. Transient Absorption of Warm Dense Matter Created by an X-Ray Free-Electron Laser. submitted 2023, preprint at the Research Square. (10.21203/rs.3.rs-2396961/v1) DOI

Ralchenko Y. 2016. Modern methods in collisional-radiative modeling of plasmas’‘, springer series on atomic. Opt. Plasma Phys. 90, 1.

Bar-Shalom A, Oreg J, Goldstein WH, Shvarts D, Zigler A. 1989. Super-transition-arrays: a model for the spectral analysis of hot, dense plasma. Phys. Rev. A 40, 3183. (10.1103/PhysRevA.40.3183) PubMed DOI

Oreg J, Bar-Shalom A, Klapisch M. 1997. Operator technique for calculating superconfiguration-averaged quantities of atoms in plasma. Phys. Rev. E 55, 5874. (10.1103/PhysRevE.55.5874) DOI

Peyrusse O. 2005. Effective superconfiguration temperature and the radiative properties of nonlocal thermodynamical equilibrium hot dense plasma. Phys. Plasm. 12, 063302. (10.1063/1.1931109) DOI

Abdallah J, Sherill ME. 2008. The reduced detailed configuration accounting (RDCA) model for NLTE plasma calculations. HEDP 4, 124. (10.1016/j.hedp.2008.05.001) DOI

Bauche J, Bauche-Arnoult C, Peyrusse O. 2015. Superconfigurations and super transition arrays. In: Atomic properties in hot plasmas. Cham, Switzerland: Springer.

Clérouin J, Renaudin P, Laudernet Y, Noiret P, Desjarlais MP. 2005. Electrical conductivity and equation-of-state study of warm dense copper: measurements and quantum molecular dynamics calculations. Phys. Rev. B 71, 064203. (10.1103/PhysRevB.71.064203) DOI

Jones CS, Murillo MS. 2007. Analysis of semi-classical potentials for molecular dynamics and Monte Carlo simulations of warm dense matter. HEDP 3, 379. (10.1016/j.hedp.2007.02.038) DOI

Holst B, Redmer R, Desjarlais MP. 2008. Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations. Phys. Rev. B 77, 184201. (10.1103/PhysRevB.77.184201) DOI

Jurek Z, Son SK, Ziaja B, Santra R. 2016. XMDYN and XATOM: versatile simulation tools for quantitative modeling XFEL-induced dynamics of matter. J. Appl. Crystallogr. 49, 1048. (10.1107/S1600576716006014) DOI

Abdullah MM, Jurek Z, Son SK, Santra R. 2017. Molecular-dynamics approach for studying the nonequilibrium behavior of X-ray-heated solid-density matter. Phys. Rev. E 96, 023205. (10.1103/PhysRevE.96.023205) PubMed DOI

Zhang Y, Gao C, Liu Q, Zhang L, Wang H, Chen M. 2020. Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics. Phys. Plasm. 27, 122704. (10.1063/5.0023265) DOI

Bonitz M et al. 2020. Ab initio simulation of warm dense matter. Phys. Plasmas 27, 042710. (10.1063/1.5143225) DOI

Bekx JJ, Son SK, Ziaja B, Santra R. 2020. Electronic-structure calculations for nonisothermal warm dense matter. Phys. Rev. Res. 2, 033061. (10.1103/PhysRevResearch.2.033061) DOI

Dharma-wardana MWC. 2006. Static and dynamic conductivity of warm dense matter within a density-functional approach: application to aluminum and gold. Phys. Rev. E 73, 036401. (10.1103/PhysRevE.73.036401) PubMed DOI

Graziani F, Desjarlais MP, Redmer R, Trickey SB (eds). 2014. Frontiers and challenges in warm dense matter, vol. 96. New York, NY: Springer; Science & Business.

Baczewski AD, Shulenburger L, Desjarlais MP, Hansen SB, Magyar RJ. 2016. X-ray Thomson scattering in warm dense matter without the Chihara decomposition. Phys. Rev. Lett. 116, 115004. (10.1103/PhysRevLett.116.115004) PubMed DOI

Smith JC, Sagredo F, Burke K. 2018. Warming up density functional theory. In Frontiers of quantum chemistry (eds MJ Wójcik, H Nakatsuji, B Kirtman, Y Ozaki), pp. 249-271. Singapore: Springer.

Ziaja B, de Castro ARB, Weckert E, Möller T. 2006. Modelling dynamics of samples exposed to free-electron-laser radiation with Boltzmann equations. Eur. Phys. J. D 40, 465. (10.1140/epjd/e2006-00240-x) DOI

Ziaja B, Weckert E, Möller T. 2007. Statistical model of radiation damage within an atomic cluster irradiated by photons from free-electron-laser. Laser Part. Beams 25, 407. (10.1017/S0263034607000523) DOI

Ziaja B, Wabnitz H, Weckert E, Möller T. 2008. Atomic clusters of various sizes irradiated with short intense pulses of VUV radiation. Europhys. Lett. 82, 24002. (10.1209/0295-5075/82/24002) PubMed DOI

Ziaja B, Wabnitz H, Weckert E, Möller T. 2008. Femtosecond non-equilibrium dynamics of clusters irradiated with short intense VUV pulses. New J. Phys. 10, 043003. (10.1088/1367-2630/10/4/043003) PubMed DOI

Ziaja B, Wabnitz H, Wang F, Weckert E, Möller T. 2009. Energetics, ionization, and expansion dynamics of atomic clusters irradiated with short intense vacuum-ultraviolet pulses. Phys. Rev. Lett. 102, 205002. (10.1103/PhysRevLett.102.205002) PubMed DOI

Ziaja B, Laarmann T, Wabnitz H, Wang F, Weckert E, Bostedt C, Möller T. 2009. Emission of electrons from rare gas clusters after their irradiation with intense VUV pulses of 100 nm and 32 nm wavelength. New J. Phys. 11, 103012. (10.1088/1367-2630/11/10/103012) DOI

Fäustlin R et al. 2010. Observation of ultrafast non-equilibrium collective dynamics in a warm dense hydrogen plasma. Phys. Rev. Lett 104, 125002. (10.1103/PhysRevLett.104.125002) PubMed DOI

Ziaja B, Chapman HN, Santra R, Laarmann T, Weckert E, Bostedt C, Möller T. 2011. Heterogeneous clusters as a model system for the study of ionization dynamics within tampered samples. Phys. Rev. A 84, 033201. (10.1103/PhysRevA.84.033201) DOI

Ziaja B, Saxena V, Son SK, Medvedev N, Barbrel B, Woloncewicz B, Stransky M. 2016. Kinetic Boltzmann approach adapted for modeling highly ionized matter created by X-ray irradiation of a solid. Phys. Rev. E 93, 053210. (10.1103/PhysRevE.93.053210) PubMed DOI

Ziaja B, Bekx JJ, Masek M, Medvedev N, Piekarz P, Saxena V, Stransky M, Toleikis S. 2021. Tracing X-ray-induced formation of warm dense gold with Boltzmann kinetic equations. Eur. Phys. J. D 75, 224. (10.1140/epjd/s10053-021-00235-z) DOI

Ethier S, Matte JP. 2001. Electron kinetic simulations of solid density Al plasmas produced by intense subpicosecond laser pulses. I. Ionization dynamics in 30 femtosecond pulses. Phys. Plasm. 8, 1650. (10.1063/1.1357221) DOI

Sherlock M, Hill EG, Rose SJ. 2013. Kinetic simulations of the heating of solid density plasma by femtosecond laser pulses. HEDP 9, 38. (10.1016/j.hedp.2012.09.010) DOI

Chung HK, Chen MH, Morgan WL, Ralchenko Y, Lee RW. 2005. FLYCHK: generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energy Density Phys. 1, 3-12. (10.1016/j.hedp.2005.07.001) DOI

Lee YT. 1987. A model for ionization balance and L-shell spectroscopy of non-LTE plasmas. J. Quant. Spectr. Rad. Tr. 38, 131. (10.1016/0022-4073(87)90039-2) DOI

Marchand R, Caille S, Lee YT. 1990. Improved screening coefficients for the hydrogenic ion model. J. Quant. Spectr. Rad. Tr. 43, 149. (10.1016/0022-4073(90)90043-6) DOI

Rosmej FB. 2006. An alternative method to determine atomic radiative emission. Europhys. Lett. 76, 1081. (10.1209/epl/i2006-10382-3) DOI

Sharkofsky IP, Johnston TW, Bachynski MP. 1966. The particle kinetics of plasmas. Reading, MA: Addison Wesley.

Aristov VV. 2001. Direct methods for solving the Boltzmann equation and study of nonequilibrium flows. Dordrecht, the Netherlands: Kluwer Academic Publishers.

Son SK, Young L, Santra R. 2011. Impact of hollow-atom formation on coherent X-ray scattering at high intensity. Phys. Rev. A 83, 033402. (10.1103/PhysRevA.83.033402) DOI

Lotz W. 1970. Electron-impact ionization cross-sections for atoms up to Z = 108. Z. Physik 232, 101-107. (10.1007/BF01393132) DOI

Hau-Riege S. 2012. Photoelectron dynamics in X-ray free-electron-laser diffractive imaging of biological samples. Phys. Rev. Lett. 108, 238101. (10.1103/PhysRevLett.108.238101) PubMed DOI

Vinko SM. 2015. X-ray free-electron laser studies of dense plasmas. J. Plasma Phys. 81, 365810501. (10.1017/S0022377815000902) DOI

Press WH et al. 2003. Numerical recipes in fortran 77. Cambridge, UK: Cambridge University Press.

Pons A, Reddy S, Prakash M, Lattimer JM, Miralles JA. 1999. Evolution of proto-neutron stars. Astrophysical J. 513, 780. (10.1086/306889) DOI

Kruer WL. 1988. The physics of laser plasma interactions. Reading, MA: Addison Wesley.

Boyd JP. 2000. Chebyshev and Fourier spectral methods. New York, NY: Dover Publications.

Gottlieb D, Orszag SA. 1977. Numerical analysis of spectral methods: theory and applications. In SIAM, Philadelphia, PA, 13–15 June.

Ng A, Sterne P, Hansen S, Recoules V, Chen Z, Tsui YY, Wilson B. 2016. DC conductivity of two-temperature warm dense gold. Phys. Rev. E 94, 033213. (10.1103/PhysRevE.94.033213) PubMed DOI

Medvedev N, Milov I. 2020. Electron-phonon coupling in metals at high electronic temperatures. Phys. Rev. B 102, 064302. (10.1103/PhysRevB.102.064302) PubMed DOI PMC

Murillo MS, Weisheit JC. 1998. Dense plasmas, screened interactions and atomic ionization. Phys. Rep. 302, 1. (10.1016/S0370-1573(98)00017-9) DOI

Son SK, Thiele R, Jurek Z, Ziaja B, Santra R. 2014. Quantum-mechanical calculation of ionization-potential lowering in dense plasmas. Phys. Rev. X 4, 031004. (10.1103/PhysRevX.4.031004) DOI

Rethfeld B, Kaiser A, Vicanek M, Simon G. 2002. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B 65, 214303. (10.1103/PhysRevB.65.214303) DOI

Pietanza LD, Colonna G, Capitelli M. 2005. Solution of the Boltzmann equation for electrons in laser-heated metals. AIP Conf. Proc. 762, 1241. (10.1063/1.1941703) DOI

Shcheblanov NS, Itina TE. 2013. Femtosecond laser interactions with dielectric materials: insights of a detailed modeling of electronic excitation and relaxation processes. Appl. Phys. A 110, 579. (10.1007/s00339-012-7130-0) DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...