Nonthermal phase transitions in metals

. 2020 Jul 29 ; 10 (1) : 12775. [epub] 20200729

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32728105
Odkazy

PubMed 32728105
PubMed Central PMC7391778
DOI 10.1038/s41598-020-69604-9
PII: 10.1038/s41598-020-69604-9
Knihovny.cz E-zdroje

It is well known that sufficiently thick metals irradiated with ultrafast laser pulses exhibit phonon hardening, in contrast to ultrafast nonthermal melting in covalently bonded materials. It is still an open question how finite size metals react to irradiation. We show theoretically that generally metals, under high electronic excitation, undergo nonthermal phase transitions if material expansion is allowed (e.g. in finite samples). The nonthermal phase transitions are induced via an increase of the electronic pressure which leads to metal expansion. This, in turn, destabilizes the lattice triggering a phase transition without a thermal electron-ion coupling mechanism involved. We find that hexagonal close-packed metals exhibit a diffusionless transition into a cubic phase, whereas metals with a cubic lattice melt. In contrast to covalent solids, nonthermal phase transitions in metals are not ultrafast, predicative on the lattice expansion.

Zobrazit více v PubMed

Siders CW. Detection of nonthermal melting by ultrafast x-ray diffraction. Science. 1999;286:1340–1342. PubMed

Dharma-wardana MWC, Perrot F. Energy relaxation and the quasiequation of state of a dense two-temperature nonequilibrium plasma. Phys. Rev. E. 1998;58:3705–3718.

Dharma-wardana MWC. Current issues in finite-t density-functional theory and warm-correlated matter. Computation. 2016;4:16.

Ng A. Outstanding questions in electron-ion energy relaxation, lattice stability, and dielectric function of warm dense matter. Int. J. Quant. Chem. 2012;112:150–160.

Graziani F, Desjarlais MP, Redmer R, Trickey SB. Frontiers and Challenges in Warm Dense Matter. New York: Springer; 2014.

Bostedt C, et al. Linac coherent light source: the first five years. Rev. Mod. Phys. 2016;88:015007.

Pile D. X-rays: first light from SACLA. Nat. Photonics. 2011;5:456–457.

Altarelli M. The European x-ray free-electron laser facility in Hamburg. Nucl. Instrum. Methods B. 2011;269:2845–2849.

Hau-Riege SP. High-intensity x-rays: interaction with matter: processes in plasmas, clusters, molecules and solids. Weinheim: Willey; 2011.

Medvedev N, Tkachenko V, Lipp V, Li Z, Ziaja B. Various damage mechanisms in carbon and silicon materials under femtosecond X-ray irradiation. 4open. 2018;1:3.

Sokolowski-Tinten K, Bialkowski J, Boing M, Cavalleri A, von der Linde D. Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation. Phys. Rev. B. 1998;58:R11805–R11808.

Sundaram SK, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mat. 2002;1:217–224. PubMed

Recoules V, Clérouin J, Zérah G, Anglade PM, Mazevet S. Effect of intense laser irradiation on the lattice stability of semiconductors and metals. Phys. Rev. Lett. 2006;96:055503. PubMed

Hunsche S, Wienecke K, Dekorsy T, Kurz H. Laser-Induced Softening of Coherent Phonons: Pathway to Nonthermal Melting. In: Barbara PF, Fujimoto JG, Knox WH, Zinth W, editors. Ultrafast Phenomena X. Springer Series in Chemical Physics. Berlin: Springer; 1996. pp. 459–560.

Kolobov AV, Krbal M, Fons P, Tominaga J, Uruga T. Distortion-triggered loss of long-range order in solids with bonding energy hierarchy. Nat. Chem. 2011;3:311–316. PubMed

Voronkov RA, Medvedev N, Volkov AE. Superionic state in alumina produced by nonthermal melting. Phys. Stat. Solidi (RRL)—Rapid Res. Lett. 2020;14:1900641.

Sciaini G, et al. Electronic acceleration of atomic motions and disordering in bismuth. Nature. 2009;458:56–59. PubMed

Hu H, Ding H, Liu F. Quantum Hookes law to classify pulse laser induced ultrafast melting. Sci. Rep. 2015;5:8212. PubMed PMC

Kandyla M, Shih T, Mazur E. Femtosecond dynamics of the laser-induced solid-to-liquid phase transition in aluminum. Phys. Rev. B. 2007;75:214107.

Ernstorfer R, et al. The formation of warm dense matter: experimental evidence for electronic bond hardening in gold. Science. 2009;323:1033–1037. PubMed

Hartland GV, Hu M, Sader JE. Softening of the symmetric breathing mode in gold particles by laser-induced heating

Vasileiadis T, et al. Ultrafast heat flow in heterostructures of Au nanoclusters on thin films: atomic disorder induced by hot electrons. ACS Nano. 2018;12:7710–7720. PubMed

Daraszewicz S, Duffy D. Hybrid continuum-atomistic modelling of swift heavy ion radiation damage in germanium. Nucl. Instrum. Methods B. 2013;303:112–115.

Nicoul M, Shymanovich U, Tarasevitch A, Von Der Linde D, Sokolowski-Tinten K. Picosecond acoustic response of a laser-heated gold-film studied with time-resolved x-ray diffraction. Appl. Phys. Lett. 2011;98:191902.

Norman GE, Starikov SV, Stegailov VV. Atomistic simulation of laser ablation of gold: effect of pressure relaxation. J. Exp. Theor. Phys. 2012;114:792–800.

Stegailov VV, Zhilyaev PA. Warm dense gold: effective ion-ion interaction and ionisation. Mol. Phys. 2016;114:509–518.

Giret Y, Daraszewicz SL, Duffy DM, Shluger AL, Tanimura K. Nonthermal solid-to-solid phase transitions in tungsten. Phys. Rev. B. 2014;90:094103.

Murphy ST, et al. Dynamical simulations of an electronically induced solid-solid phase transformation in tungsten. Phys. Rev. B. 2015;92:134110.

Zhang H, et al. Ultrafast destructuring of laser-irradiated tungsten: thermal or nonthermal process. Phys. Rev. B. 2016;94:224103.

Grimvall G, Magyari-Köpe B, Ozolins V, Persson KA. Lattice instabilities in metallic elements. Rev. Mod. Phys. 2012;84:945–986.

Ono S. Lattice dynamics for isochorically heated metals: a model study. J. Appl. Phys. 2019;126:075113.

Lian C, Zhang SB, Meng S. Ab initio evidence for nonthermal characteristics in ultrafast laser melting. Phys. Rev. B. 2016;94:184310.

Chapman DA, Gericke DO. Analysis of Thomson scattering from nonequilibrium plasmas. Phys. Rev. Lett. 2011;107:165004. PubMed

Medvedev N, Zastrau U, Förster E, Gericke DO, Rethfeld B. Short-time electron dynamics in aluminum excited by femtosecond extreme ultraviolet radiation. Phys. Rev. Lett. 2011;107:165003. PubMed

Medvedev N. Femtosecond X-ray induced electron kinetics in dielectrics: application for FEL-pulse-duration monitor. Appl. Phys. B. 2015;118:417–429.

Cullen, D. E. A Survey of Atomic Binding Energies for Use in EPICS2017. Technical Report. (Nuclear Data Section, International Atomic Energy Agency, Vienna, 2018). https://www-nds.iaea.org/epics/.

Medvedev N, Rethfeld B. Transient dynamics of the electronic subsystem of semiconductors irradiated with an ultrashort vacuum ultraviolet laser pulse. New J. Phys. 2010;12:073037.

Kim Y-K, Rudd M. Binary-encounter-dipole model for electron-impact ionization. Phys. Rev. A. 1994;50:3954–3967. PubMed

Medvedev N, Li Z, Tkachenko V, Ziaja B. Electron-ion coupling in semiconductors beyond Fermis golden rule. Phys. Rev. B. 2017;95:014309.

Medvedev N. Modeling Warm Dense Matter Formation within Tight Binding Approximation. In: Juha L, Bajt S, Guizard S, editors. Optics Damage and Materials Processing by EUV/X-ray Radiation VII. Bellingham: SPIE; 2019. p. 25.

Papaconstantopoulos DA, Mehl MJ. The Slater–Koster tight-binding method: a computationally efficient and accurate approach. J. Phys. Condens. Matter. 2003;15:R413–R440.

Medvedev N, Jeschke HO, Ziaja B. Nonthermal phase transitions in semiconductors induced by a femtosecond extreme ultraviolet laser pulse. New J. Phys. 2013;15:015016.

Mehl MJ, Papaconstantopoulos DA. Applications of a tight-binding total-energy method for transition and noble metals: elastic constants, vacancies, and surfaces of monatomic metals. Phys. Rev. B. 1996;54:4519–4530. PubMed

Mehl MJ, Papaconstantopoulos DA. Tight-binding study of high-pressure phase transitions in titanium: alpha to omega and beyond. Europhys. Lett. 2002;60:248–254.

Silayi S, Papaconstantopoulos D, Mehl M. A tight-binding molecular dynamics study of the noble metals Cu, Ag and Au. Comput. Mat. Sci. 2018;146:278–286.

Medvedev N, Li Z, Ziaja B. Thermal and nonthermal melting of silicon under femtosecond x-ray irradiation. Phys. Rev. B. 2015;91:054113.

Parrinello M, Rahman A. Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 1980;45:1196–1199.

Milov I, et al. Modeling of XUV-induced damage in Ru films: the role of model parameters. JOSA B. 2018;35:B43–B53.

Daraszewicz SL, et al. Structural dynamics of laser-irradiated gold nanofilms. Phys. Rev. B. 2013;88:184101.

Bévillon E, Colombier JP, Stoian R. First-principles assessment of potential ultrafast laser-induced structural transition in Ni. Appl. Surf. Sci. 2016;374:365–369.

Sokolowski-Tinten K, Bialkowski J, von der Linde D. Ultrafast laser-induced order-disorder transitions in semiconductors. Phys. Rev. B. 1995;51:14186–14198. PubMed

Jeschke HO, Garcia ME, Bennemann KH. Theory for laser-induced ultrafast phase transitions in carbon. Appl. Phys. A. 1999;69:49–53.

Rethfeld B, Sokolowski-Tinten K, von der Linde D, Anisimov SI. Ultrafast thermal melting of laser-excited solids by homogeneous nucleation. Phys. Rev. B. 2002;65:092103.

Mo MZ, et al. Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction. Science. 2018;360:1451–1455. PubMed

White TG, et al. Electron-phonon equilibration in laser-heated gold films. Phys. Rev. B. 2014;90:014305.

Lin Z, Zhigilei L, Celli V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B. 2008;77:075133.

Medvedev, N. & Milov, I. Electron-Phonon Coupling in Metals at High Electronic Temperatures. arXiv:2005.05186 (2020). PubMed PMC

Bonn M, et al. Ultrafast electron dynamics at metal surfaces: competition between electron–phonon coupling and hot-electron transport. Phys. Rev. B. 2000;61:1101–1105.

Milov I, et al. Mechanism of single-shot damage of Ru thin films irradiated by femtosecond extreme UV free-electron laser. Opt. Express. 2018;26:19665. PubMed

Milov I, et al. Similarity in ruthenium damage induced by photons with different energies: from visible light to hard X-rays. Appl. Surf. Sci. 2020;501:143973.

Hartley N, et al. Ultrafast anisotropic disordering in graphite driven by intense hard X-ray pulses. High Energy Dens. Phys. 2019;32:63–69.

Medvedev N, Kopecky M, Chalupsky J, Juha L. Femtosecond x-ray diffraction can discern nonthermal from thermal melting. Phys. Rev. B. 2019;99:100303.

Starikov SV, Pisarev VV. Atomistic simulation of laser-pulse surface modification: predictions of models with various length and time scales. J. Appl. Phys. 2015;117:135901.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...