Multiplex real-time PCR for the detection of Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and pathogenic Xanthomonas species on tomato plants
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31910230
PubMed Central
PMC6946519
DOI
10.1371/journal.pone.0227559
PII: PONE-D-19-24050
Knihovny.cz E-zdroje
- MeSH
- Actinobacteria genetika izolace a purifikace fyziologie MeSH
- Clavibacter MeSH
- kvantitativní polymerázová řetězová reakce * MeSH
- prostředí kontrolované MeSH
- Pseudomonas syringae genetika izolace a purifikace fyziologie MeSH
- Solanum lycopersicum růst a vývoj mikrobiologie MeSH
- Xanthomonas genetika izolace a purifikace fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A multiplex real-time PCR method based on fluorescent TaqMan® probes was developed for the simultaneous detection of the tomato pathogenic bacteria Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and bacterial spot-causing xanthomonads. The specificity of the multiplex assay was validated on 44 bacterial strains, including 32 target pathogen strains as well as closely related species and nontarget tomato pathogenic bacteria. The designed multiplex real-time PCR showed high sensitivity when positive amplification was observed for one pg of bacterial DNA in the cases of Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato bacteria and 100 pg for bacterial spot-causing xanthomonads. The reliability of the developed multiplex real-time PCR assay for in planta detection was verified by recognition of the target pathogens in 18 tomato plants artificially inoculated by each of the target bacteria and tomato samples from production greenhouses.
Zobrazit více v PubMed
Özdemir Z. Development of a multiplex PCR assay for the simultaneous detection of Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and Xanthomonas axonopodis pv. vesicatoria using pure cultures. J Plant Pathol. 2009; 91: 495–497.
Kolomiets JV, Grygoryuk IP, Butsenko LM. Bacterial diseases of tomato plants in terms of open and covered growing of Ukraine. Annals of Agrarian Science. 2017; 15(2): 213–216.
Moretti C, Amatulli MT, Buonaurio R. PCR-based assay for the detection of Xanthomonas euvesicatoria causing pepper and tomato bacterial spot. Lett Appl Microbiol. 2009; 49(4): 466–471. 10.1111/j.1472-765X.2009.02690.x PubMed DOI
EPPO. EPPO A2 List of pests recommended for regulation as quarantine pests, version 2018–09. 2018 [cited 1 May 2019]. In: European and Mediterranean Plant Protection Organisation [Internet]. Available from: https://www.eppo.int/ACTIVITIES/plant_quarantine/A2_list.
Preston G. Pseudomonas syringae pv. tomato: the right pathogen, of the right plant, at the right time. Mol Plant Pathol. 2000; 1(5): 263–275. 10.1046/j.1364-3703.2000.00036.x PubMed DOI
Zaccardelli M, Parisi M, Giordano I. Susceptibility of tomato genotypes to Pseudomonas syringae pv. tomato in the field conditions. J Plant Pathol. 2002; 84: 200.
Carlton WM, Braun EJ, Gleason ML. Ingress of Clavibacter michiganensis subsp michiganensis into tomato leaves through hydathodes. Phytopathology. 1998; 88(6): 525–529 10.1094/PHYTO.1998.88.6.525 PubMed DOI
De León L, Siverio F, López MM, Rodríguez A. Clavibacter michiganensis subsp. michiganensis, a seedborne tomato pathogen: healthy seeds are still the goal. Plant Dis. 2011; 95: 1328–1338. 10.1094/PDIS-02-11-0091 PubMed DOI
Chalupowicz L, Zellermann E-M, Fluegel M, Dror O, Eichenlaub R, Gartemann K-H, et al. Colonization and movement of GFP-labeled Clavibacter michiganensis subsp. michiganensis during tomato infection. Phytopathology. 2012; 102: 23–31. 10.1094/PHYTO-05-11-0135 PubMed DOI
Medina-Mora C, Hausbeck MK, Fulbright DW. Bird’s eye lesions of tomato fruit produced by aerosol and direct application of Clavibacter michiganensis subsp. michiganensis. Plant Dis. 2001; 85: 88–91. 10.1094/PDIS.2001.85.1.88 PubMed DOI
Gartemann K-H, Kirchner O, Engemann J, Gräfen I, Eichenlaub R, Burger A. Clavibacter michiganensis subsp. michiganensis: first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. J Biotechnol. 2003; 106: 179–191. 10.1016/j.jbiotec.2003.07.011 PubMed DOI
McCarter SM, Jones JB, Gitaitis RD, Smitky DR. Survival of Pseudomonas svringae pv. tomato in association with tomato seed, soil, host tissue and epiphytic weed hosts in Georgia. Phytopathology. 1983; 73: 1393–1398.
Bashan Y, Diab S, Okon Y. Survival of Xanthomonas campestris pv. vesicatoria in pepper seeds and roots in symptomless and dry leaves in non-host plants and in the soil. Plant Soil. 1982; 68(2): 161–170.
Goode MJ, Sasser M. Prevention–The key to controlling bacterial spot and bacterial speck of tomato. Plant Dis. 1980; 64: 831–834.
Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW. Reclassification of the Xanthomonads associated with Bacterial spot disease of tomato and pepper. Syst Appl Microbiol. 2004; 27(6): 755–762. 10.1078/0723202042369884 PubMed DOI
Young JM, Park DC, Shearman HM, Fargier F. A multilocus sequence analysis of the genus Xanthomonas. Syst Appl Microbiol. 2008; 31: 366–377. 10.1016/j.syapm.2008.06.004 PubMed DOI
Hamza AA, Robène-Soustrade I, Jouen E, Gagnevin L, Lefeuvre P. Genetic and pathological diversity among Xanthomonas strains responsible for bacterial spot on tomato and pepper in the southwest Indian Ocean region. Plant Dis. 2010; 94: 993–999. 10.1094/PDIS-94-8-0993 PubMed DOI
Schwartz AR, Potnis N, Timilsina S, Wilson M, Patane J, Martins J, et al. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Front Microbiol. 2015; 6: 535 10.3389/fmicb.2015.00535 PubMed DOI PMC
Blancard D. Tomato Diseases: A Colour Handbook. 2nd ed London: Academic Press; 2012.
Jones JB, Pohronezny KL, Stall RE, Jones JP. Survival of Xanthomonas campestris pv. vesicatoria in Florida on tomato crop residue, weeds, seeds, and volunteer tomato plants. Phytopathology. 1986; 76(4): 430–434.
Dutta B, Gitaitis R, Sanders H, Booth C, Smith S, Langston DB. Role of blossom colonization in pepper seed infestation by Xanthomonas euvesicatoria. Phytopathology. 2014; 104: 232–239. 10.1094/PHYTO-05-13-0138-R PubMed DOI
Ritchie DF. Bacterial spot of pepper and tomato The Plant Health Instructor. 2000. [cited 1 May 2019]. In: The American Phytopathological Society (APS) [Internet]. Available from: https://www.apsnet.org/edcenter/disandpath/prokaryote/pdlessons/Pages/Bacterialspot.aspx.
Burokiene D. Early detection of Clavibacter michiganensis subsp. michiganensis in tomato seedlings. Agronomy Research. 2006; 4: 151–154.
Pastrik KH, Rainey FA. Identification and differentiation of Clavibacter michiganensis subspecies by polymerase chain reaction-based techniques. J Phytopathol. 1999; 147: 687–693.
Zaccardelli M, Spasiano A, Bazzi C, Merighi M. Identification and in planta detection of Pseudomonas syringae pv. tomato using PCR amplification of hrpZ(Pst). Eur J Plant Pathol. 2005; 111(1): 85–90.
Fath-Allah MM, Ali MH, Rasmi MR. Using hrpL gene specific primers to detect Pseudomonas syringae pv. tomato by polymerase chain reaction. Egyptian Journal of Experimental Biology (Agric.). 2006; 2: 7–13.
Koenraadt H, van Betteray B, Germain R, Hiddink G, Jones JB, Oosterhof J, et al. Development of specific primers for the molecular detection of bacterial spot of pepper and tomato. Acta Hortic. 2009; 808: 99–102.
Kokošková B, Mráz I, Fousek J. Comparison of specificity and sensitivity of immunochemical and molecular techniques for determination of Clavibacter michiganensis subsp. michiganensis. Folia Microbiol (Praha). 2010; 55 (3): 239–244. PubMed
Bach HJ, Jessen I, Schloter M, Munch JC. A TaqMan-PCR protocol for quantification and differentiation of the phytopathogenic Clavibacter michiganensis subspecies. J Microbiol Methods. 2003; 52: 85–91. 10.1016/s0167-7012(02)00152-5 PubMed DOI
Fanelli V, Cariddi C, Finetti-Sialer M. Selective detection of Pseudomonas syringae pv. tomato using dot blot hybridization and real-time PCR. Plant Pathol. 2007; 56(4): 683–691.
Oosterhof J, Berendsen S. The development of a specific Real‐Time TaqMan for the detection of Clavibacter michiganensis supsp. michiganensis (Abstr.). Phytopathology. 2011; 101: S133.
Araujo ER, Costa JR, Ferreira MASV, Quezado-Duval AM. Simultaneous detection and identification of the Xanthomonas species complex associated with tomato bacterial spot using species-specific primers and multiplex PCR. J Appl Microbiol. 2012; 113: 1479–1490. 10.1111/j.1365-2672.2012.05431.x PubMed DOI
Dreier J, Bermpohl A, Eichenlaub R. Southern hybridization and PCR for specific detection of phytopathogenic Clavibacter michiganensis subsp. michiganensis. Phytopathology. 1995; 85: 462–468.
Ftayeh R, von Tiedemann A, Koopmann B, Rudolph K, Abu-Ghorrah M. First record of Clavibacter michiganensis subsp. michiganensis causing canker of tomato plants in Syria. Plant Dis. 2008; 92(4), 649. PubMed
Kozik EU, Sobiczewski P. Assessment of inoculation techniques suitability for determination of tomato plants resistance to bacterial speck (Pseudomonas syringae pv. tomato). Phytopathol Polonica. 2007; 44: 17–25.
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012; 13: 134 10.1186/1471-2105-13-134 PubMed DOI PMC
Evans RN, Blaha G, Bailey S, Steitz TA. The structure of LepA, the ribosomal back translocase. Proc Natl Acad Sci USA. 2008; 105(12): 4673–4678. 10.1073/pnas.0801308105 PubMed DOI PMC
Youngman EM, Green R. Ribosomal translocation: lepA does it backwards. Curr Biol. 2007; 17(4): R136–R139. 10.1016/j.cub.2006.12.029 PubMed DOI
He L-S, Zhang P-W, Huang J-M, Zhu F-C, Danchin A, Wang Y. The enigmatic genome of an obligate ancient Spiroplasma symbiont in a hadal holothurian. Appl Environ Microbiol. 2018; 84: e01965–17. 10.1128/AEM.01965-17 PubMed DOI PMC
Bereswill S, Bugert P, Volksch B, Ullrich M, Bender CL, Geider K. Identification and relatedness of coronatine-producing Pseudomonas syringae pathovars by PCR analysis and sequence determination of the amplification products. Appl Environ Microbiol. 1994; 60(8): 2924–2930. PubMed PMC
Leite RP, Minsavage GV, Bonas U, Stall RE. Detection and identification of phytopathogenic Xanthomonas strains by amplification of DNA sequences related to the hrp genes of Xanthomonas campestris pv. vesicatoria. Appl Environ Microbiol. 1994; 60(4): 1068–1077. PubMed PMC
Zhao W-J, Chen H-Y, Zhu S-F, Xia M-X, Tan T-W. One-step detection of Clavibacter michiganensis subsp. michiganensis in symptomless tomato seeds using a TaqMan probe. J Plant Pathol. 2007; 89(3): 349–351.
Luo LX, Walters C, Bolkan H, Liu XL, Li JQ. Quantification of viable cells of Clavibacter michiganensis subsp. Michiganensis using a DNA binding dye and a real-time PCR assay. Plant Pathol. 2008; 57: 332–337.
Hadas R, Kritzman G, Kleitman F, Gefen T, Manulis S. Comparison of extraction procedures and determination of the detection threshold for Clavibacter michiganensis ssp. michiganensis in tomato seeds. Plant Pathol. 2005; 54: 643–649.
Kleitman F, Barash I, Burger A, Iraki N, Falah Y, Sessa G, et al. Characterization of a Clavibacter michiganensis subsp. michiganensis population in Israel. Eur J Plant Pathol. 2008; 121: 463–475.
Caraguel ChGB, Stryhn H, Gagné N, Dohoo IR, Hammell KL. Selection of a cutoff value for real-time polymerase chain reaction results to fit a diagnostic purpose: analytical and epidemiologic approaches. J Veg Diagn Invest. 2011; 23: 2–15. PubMed
Oosterhof J, Berendsen S. The development of a specific Real-Time TaqMan for the detection of Clavibacter michiganensis supsp. michiganensis (Abstr.). Phytopathology. 2011; 101: S133.
EPPO. PM 7/42 (3) Clavibacter michiganensis subsp. michiganensis. EPPO Bulletin. 2016; 46(2): 202–225.
Lindgren PB, Peet RC, Panapoulos NJ. Gene cluster of Pseudomonas syringae pv. phaseolicola controls pathogenicity of bean plants and hypersensitivity of nonhost plant. J Bacteriol. 1986; 168(2): 515–522. PubMed PMC
Lonetto MA, Brown KL, Rudd KE, Buttner M. Analysis of the Streptomyces coelicolor sig E gene reveals the existence of a sub-family of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmatic functions. Proc Natl Acad Sci USA. 1994; 91: 7573–7577. 10.1073/pnas.91.16.7573 PubMed DOI PMC
Huang HC, Lin RH, Chang CJ, Collmer A, Deng WL. The complete hrp gene cluster of Pseudomonas syringae pv. syringae 61 includes two blocks of genes required for harpin Pss secretion that are arranged colinearly with Yersinia ysc homologs. Mol Plant Microbe Interact. 1995; 8: 733–746 10.1094/mpmi-8-0733 PubMed DOI
Alfano JR, Collmer A. The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J Bacteriol. 1997; 179(18): 5655–62. 10.1128/jb.179.18.5655-5662.1997 PubMed DOI PMC
Strayer A, Jeyaprakash A, Minsavage GV, Timilsina S, Vallad GE, Jones JB, et al. A multiplex real-time PCR assay differentiates four Xanthomonas species associated with bacterial spot of tomato. Plant Dis. 2016; 100: 1660–1668. 10.1094/PDIS-09-15-1085-RE PubMed DOI
Potnis N, Timilsina S, Strayer A, Shantharaj D, Barak JD, Paret ML, et al. Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Mol Plant Pathol. 2015; 16: 907–20. 10.1111/mpp.12244 PubMed DOI PMC
Timilsina S, Jibrin MO, Potnis N, Minsavage GV, Kebede M, Schwartz A, et al. Multilocus sequence analysis of xanthomonads causing bacterial spot of tomato and pepper reveals strains generated by recombination among species and recent global spread of Xanthomonas gardneri. Appl Environ Microbiol. 2015; 81(4): 1520–1529. 10.1128/AEM.03000-14 PubMed DOI PMC