Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1)
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
T32 GM007324
NIGMS NIH HHS - United States
P01 NS042202
NINDS NIH HHS - United States
F32 HD093292
NICHD NIH HHS - United States
R01 DC001919
NIDCD NIH HHS - United States
R01 NS102239
NINDS NIH HHS - United States
PubMed
31914597
PubMed Central
PMC6956700
DOI
10.1096/fj.201902366r
Knihovny.cz E-resources
- Keywords
- KCNT1, Phactr1, Slack channels, dephosphorylation, epilepsy, intellectual disability,
- MeSH
- Actins metabolism MeSH
- Cell Line MeSH
- Potassium Channels, Sodium-Activated metabolism MeSH
- HEK293 Cells MeSH
- Rats MeSH
- Humans MeSH
- Membrane Potentials physiology MeSH
- Patch-Clamp Techniques methods MeSH
- Mutation genetics MeSH
- Mice MeSH
- Neurons metabolism MeSH
- Protein Phosphatase 1 metabolism MeSH
- Signal Transduction physiology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Actins MeSH
- Potassium Channels, Sodium-Activated MeSH
- Protein Phosphatase 1 MeSH
The Slack (KCNT1) gene encodes sodium-activated potassium channels that are abundantly expressed in the central nervous system. Human mutations alter the function of Slack channels, resulting in epilepsy and intellectual disability. Most of the disease-causing mutations are located in the extended cytoplasmic C-terminus of Slack channels and result in increased Slack current. Previous experiments have shown that the C-terminus of Slack channels binds a number of cytoplasmic signaling proteins. One of these is Phactr1, an actin-binding protein that recruits protein phosphatase 1 (PP1) to certain phosphoprotein substrates. Using co-immunoprecipitation, we found that Phactr1 is required to link the channels to actin. Using patch clamp recordings, we found that co-expression of Phactr1 with wild-type Slack channels reduces the current amplitude but has no effect on Slack channels in which a conserved PKC phosphorylation site (S407) that regulates the current amplitude has been mutated. Furthermore, a Phactr1 mutant that disrupts the binding of PP1 but not that of actin fails to alter Slack currents. Our data suggest that Phactr1 regulates the Slack by linking PP1 to the channel. Targeting Slack-Phactr1 interactions may therefore be helpful in developing the novel therapies for brain disorders associated with the malfunction of Slack channels.
Department of Cellular and Molecular Physiology Yale School of Medicine New Haven CT USA
Department of Pharmacology Yale School of Medicine New Haven CT USA
Signalling and Transcription Group The Francis Crick Institute London UK
See more in PubMed
Bausch AE, Dieter R, Nann Y, Hausmann M, Meyerdierks N, Kaczmarek LK, Ruth P, and Lukowski R (2015) The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice. Learn Mem 22, 323–335 PubMed PMC
Brown MR, Kronengold J, Surguchev AA, and L.K. K (2014) Mutations in FMRP prevent FMRP-Slack potassium channel interactions on the plasma membrane. . Neurosci. Abstr, (CD ROM), 12608
Brown MR, Kronengold J, Gazula VR, Chen Y, Strumbos JG, Sigworth FJ, Navaratnam D, and Kaczmarek LK (2010) Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nature neuroscience 13, 819–821 PubMed PMC
Fleming MR, Brown MR, Kronengold J, Zhang Y, Jenkins DP, Barcia G, Nabbout R, Bausch AE, Ruth P, Lukowski R, Navaratnam DS, and Kaczmarek LK (2016) Stimulation of Slack K+ Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex. Cell Rep 16, 2281–2288 PubMed PMC
Kim GE, and Kaczmarek LK (2014) Emerging role of the KCNT1 Slack channel in intellectual disability. Front Cell Neurosci 8, 209. PubMed PMC
Kim GE, Kronengold J, Barcia G, Quraishi IH, Martin HC, Blair E, Taylor JC, Dulac O, Colleaux L, Nabbout R, and Kaczmarek LK (2014) Human slack potassium channel mutations increase positive cooperativity between individual channels. Cell Rep 9, 1661–1672 PubMed PMC
Tang QY, Zhang FF, Xu J, Wang R, Chen J, Logothetis DE, and Zhang Z (2016) Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. Cell Rep 14, 129–139 PubMed PMC
Foehring RC, Schwindt PC, and Crill WE (1989) Norepinephrine selectively reduces slow Ca2+- and Na+-mediated K+ currents in cat neocortical neurons. Journal of neurophysiology 61, 245–256 PubMed
Yang B, Desai R, and Kaczmarek LK (2007) Slack and Slick K(Na) channels regulate the accuracy of timing of auditory neurons. J Neurosci 27, 2617–2627 PubMed PMC
Quraishi IH, Stern S, Mangan KP, Zhang Y, Ali SR, Mercier MR, Marchetto MC, McLachlan MJ, Jones EM, Gage FH, and Kaczmarek LK (2019) An Epilepsy-Associated KCNT1 Mutation Enhances Excitability of Human iPSC-Derived Neurons by Increasing Slack KNa Currents. J Neurosci 39, 7438–7449 PubMed PMC
Barcia G, Fleming MR, Deligniere A, Gazula VR, Brown MR, Langouet M, Chen H, Kronengold J, Abhyankar A, Cilio R, Nitschke P, Kaminska A, Boddaert N, Casanova JL, Desguerre I, Munnich A, Dulac O, Kaczmarek LK, Colleaux L, and Nabbout R (2012) De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet 44, 1255–1259 PubMed PMC
Ishii A, Shioda M, Okumura A, Kidokoro H, Sakauchi M, Shimada S, Shimizu T, Osawa M, Hirose S, and Yamamoto T (2013) A recurrent KCNT1 mutation in two sporadic cases with malignant migrating partial seizures in infancy. Gene PubMed
Heron SE, Smith KR, Bahlo M, Nobili L, Kahana E, Licchetta L, Oliver KL, Mazarib A, Afawi Z, Korczyn A, Plazzi G, Petrou S, Berkovic SF, Scheffer IE, and Dibbens LM (2012) Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nature genetics 44, 1188–1190 PubMed
Arai-Ichinoi N, Uematsu M, Sato R, Suzuki T, Kudo H, Kikuchi A, Hino-Fukuyo N, Matsumoto M, Igarashi K, Haginoya K, and Kure S (2016) Genetic heterogeneity in 26 infants with a hypomyelinating leukodystrophy. Hum Genet 135, 89–98 PubMed
Ohba C, Kato M, Takahashi N, Osaka H, Shiihara T, Tohyama J, Nabatame S, Azuma J, Fujii Y, Hara M, Tsurusawa R, Inoue T, Ogata R, Watanabe Y, Togashi N, Kodera H, Nakashima M, Tsurusaki Y, Miyake N, Tanaka F, Saitsu H, and Matsumoto N (2015) De novo KCNT1 mutations in early-onset epileptic encephalopathy. Epilepsia 56, e121–128 PubMed
Vanderver A, Simons C, Schmidt JL, Pearl PL, Bloom M, Lavenstein B, Miller D, Grimmond SM, and Taft RJ (2014) Identification of a novel de novo p.Phe932Ile KCNT1 mutation in a patient with leukoencephalopathy and severe epilepsy. Pediatr Neurol 50, 112–114 PubMed PMC
Martin HC, Kim GE, Pagnamenta AT, Murakami Y, Carvill GL, Meyer E, Copley RR, Rimmer A, Barcia G, Fleming MR, Kronengold J, Brown MR, Hudspith KA, Broxholme J, Kanapin A, Cazier JB, Kinoshita T, Nabbout R, Consortium WGS, Bentley D, McVean G, Heavin S, Zaiwalla Z, McShane T, Mefford HC, Shears D, Stewart H, Kurian MA, Scheffer IE, Blair E, Donnelly P, Kaczmarek LK, and Taylor JC (2014) Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Human molecular genetics 23, 3200–3211 PubMed PMC
Juang JM, Lu TP, Lai LC, Ho CC, Liu YB, Tsai CT, Lin LY, Yu CC, Chen WJ, Chiang FT, Yeh SF, Lai LP, Chuang EY, and Lin JL (2014) Disease-targeted sequencing of ion channel genes identifies de novo mutations in patients with non-familial Brugada syndrome. Sci Rep 4, 6733. PubMed PMC
Evely KM, Pryce KD, and Bhattacharjee A (2017) The Phe932Ile mutation in KCNT1 channels associated with severe epilepsy, delayed myelination and leukoencephalopathy produces a loss-of-function channel phenotype. Neuroscience 351, 65–70 PubMed PMC
Lee A, Fakler B, Kaczmarek LK, and Isom LL (2014) More than a pore: ion channel signaling complexes. J Neurosci 34, 15159–15169 PubMed PMC
Kaczmarek LK (2006) Non-conducting functions of voltage-gated ion channels. Nature Reviews Neuroscience 7, 761–771 PubMed
Abekhoukh S, Sahin HB, Grossi M, Zongaro S, Maurin T, Madrigal I, Kazue-Sugioka D, Raas-Rothschild A, Doulazmi M, Carrera P, Stachon A, Scherer S, Nascimento MR, Trembleau A, Arroyo I, Peter S, Smith IM, Mila M, Smith AC, Giangrande A, Caille I, and Bardoni B (2017) New insights into the regulatory function of CYFIP1 in the context of WAVE- and FMRP-containing complexes. Dis Model Mech PubMed PMC
Huang Y (2015) Up-regulated cytoplasmic FMRP-interacting protein 1 in intractable temporal lobe epilepsy patients and a rat model. Int J Neurosci, 1–10 PubMed
Zhang Y, Brown MR, Hyland C, Chen Y, Kronengold J, Fleming MR, Kohn AB, Moroz LL, and Kaczmarek LK (2012) Regulation of neuronal excitability by interaction of fragile X mental retardation protein with slack potassium channels. J Neurosci 32, 15318–15327 PubMed PMC
Pathania M, Davenport EC, Muir J, Sheehan DF, Lopez-Domenech G, and Kittler JT (2014) The autism and schizophrenia associated gene CYFIP1 is critical for the maintenance of dendritic complexity and the stabilization of mature spines. Transl Psychiatry 4, e374. PubMed PMC
Zhang Y, Ni W, Horwich AL, and Kaczmarek LK (2017) An ALS-Associated Mutant SOD1 Rapidly Suppresses KCNT1 (Slack) Na+-Activated K+ Channels in Aplysia Neurons. J Neurosci 37, 2258–2265 PubMed PMC
Allen PB, Greenfield AT, Svenningsson P, Haspeslagh DC, and Greengard P (2004) Phactrs 1–4: A family of protein phosphatase 1 and actin regulatory proteins. Proc Natl Acad Sci U S A 101, 7187–7192 PubMed PMC
Freilinger T, Anttila V, de Vries B, Malik R, Kallela M, Terwindt GM, Pozo-Rosich P, Winsvold B, Nyholt DR, van Oosterhout WP, Artto V, Todt U, Hamalainen E, Fernandez-Morales J, Louter MA, Kaunisto MA, Schoenen J, Raitakari O, Lehtimaki T, Vila-Pueyo M, Gobel H, Wichmann E, Sintas C, Uitterlinden AG, Hofman A, Rivadeneira F, Heinze A, Tronvik E, van Duijn CM, Kaprio J, Cormand B, Wessman M, Frants RR, Meitinger T, Muller-Myhsok B, Zwart JA, Farkkila M, Macaya A, Ferrari MD, Kubisch C, Palotie A, Dichgans M, van den Maagdenberg AM, and International Headache Genetics C (2012) Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet 44, 777–782 PubMed PMC
Hamada N, Ogaya S, Nakashima M, Nishijo T, Sugawara Y, Iwamoto I, Ito H, Maki Y, Shirai K, Baba S, Maruyama K, Saitsu H, Kato M, Matsumoto N, Momiyama T, and Nagata KI (2018) De novo PHACTR1 mutations in West syndrome and their pathophysiological effects. Brain 141, 3098–3114 PubMed
de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, Vulto-van Silfhout AT, Koolen DA, de Vries P, Gilissen C, del Rosario M, Hoischen A, Scheffer H, de Vries BB, Brunner HG, Veltman JA, and Vissers LE (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367, 1921–1929 PubMed
Kim JY, Choi SY, Moon Y, Kim HJ, Chin JH, Kim H, and Sun W (2012) Different expression patterns of Phactr family members in normal and injured mouse brain. Neuroscience 221, 37–46 PubMed
Prechova M (2018) Functional Analysis of PP1 Regulator Phactr1 In Signalling and Transcription Group, University College Londoon, London: (https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.747580)
Wiezlak M, Diring J, Abella J, Mouilleron S, Way M, McDonald NQ, and Treisman R (2012) G-actin regulates the shuttling and PP1 binding of the RPEL protein Phactr1 to control actomyosin assembly. J Cell Sci 125, 5860–5872 PubMed
Kim TH, Goodman J, Anderson KV, and Niswander L (2007) Phactr4 regulates neural tube and optic fissure closure by controlling PP1-, Rb-, and E2F1-regulated cell-cycle progression. Dev Cell 13, 87–102 PubMed
Chen H, Kronengold J, Yan Y, Gazula VR, Brown MR, Ma L, Ferreira G, Yang Y, Bhattacharjee A, Sigworth FJ, Salkoff L, and Kaczmarek LK (2009) The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels. J Neurosci 29, 5654–5665 PubMed PMC
Park HA, Licznerski P, Mnatsakanyan N, Niu Y, Sacchetti S, Wu J, Polster BM, Alavian KN, and Jonas EA (2017) Inhibition of Bcl-xL prevents pro-death actions of DeltaN-Bcl-xL at the mitochondrial inner membrane during glutamate excitotoxicity. Cell Death Differ 24, 1963–1974 PubMed PMC
Brewer GJ, Torricelli JR, Evege EK, and Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35, 567–576 PubMed
Joiner WJ, Tang MD, Wang LY, Dworetzky SI, Boissard CG, Gan L, Gribkoff VK, and Kaczmarek LK (1998) Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits. Nat Neurosci 1, 462–469 PubMed
Dunn KW, Kamocka MM, and McDonald JH (2011) A practical guide to evaluating colocalization in biological microscopy. American journal of physiology. Cell physiology 300, C723–742 PubMed PMC
Zhang Y, Kim TH, and Niswander L (2012) Phactr4 regulates directional migration of enteric neural crest through PP1, integrin signaling, and cofilin activity. Genes Dev 26, 69–81 PubMed PMC
Milligan CJ, Li M, Gazina EV, Heron SE, Nair U, Trager C, Reid CA, Venkat A, Younkin DP, Dlugos DJ, Petrovski S, Goldstein DB, Dibbens LM, Scheffer IE, Berkovic SF, and Petrou S (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann Neurol 75, 581–590 PubMed PMC
Santi CM, Ferreira G, Yang B, Gazula VR, Butler A, Wei A, Kaczmarek LK, and Salkoff L (2006) Opposite regulation of Slick and Slack K+ channels by neuromodulators. J Neurosci 26, 5059–5068 PubMed PMC
Lim CX, Ricos MG, Dibbens LM, and Heron SE (2016) KCNT1 mutations in seizure disorders: the phenotypic spectrum and functional effects. J Med Genet 53, 217–225 PubMed
Kaczmarek LK (2013) Slack, Slick and Sodium-Activated Potassium Channels. ISRN Neurosci 2013 PubMed PMC
Huang F, Wang X, Ostertag EM, Nuwal T, Huang B, Jan YN, Basbaum AI, and Jan LY (2013) TMEM16C facilitates Na(+)-activated K+ currents in rat sensory neurons and regulates pain processing. Nat Neurosci 16, 1284–1290 PubMed PMC
Ito H, Mizuno M, Noguchi K, Morishita R, Iwamoto I, Hara A, and Nagata KI (2018) Expression analyses of Phactr1 (phosphatase and actin regulator 1) during mouse brain development. Neurosci Res 128, 50–57 PubMed
Kelloniemi A, Szabo Z, Serpi R, Napankangas J, Ohukainen P, Tenhunen O, Kaikkonen L, Koivisto E, Bagyura Z, Kerkela R, Leosdottir M, Hedner T, Melander O, Ruskoaho H, and Rysa J (2015) The Early-Onset Myocardial Infarction Associated PHACTR1 Gene Regulates Skeletal and Cardiac Alpha-Actin Gene Expression. PLoS One 10, e0130502. PubMed PMC
Kang S, Xu M, Cooper EC, and Hoshi N (2014) Channel-anchored protein kinase CK2 and protein phosphatase 1 reciprocally regulate KCNQ2-containing M-channels via phosphorylation of calmodulin. J Biol Chem 289, 11536–11544 PubMed PMC
Mutation in PHACTR1 associated with multifocal epilepsy with infantile spasms and hypsarrhythmia