Return of the moth: rethinking the effect of climate on insect outbreaks
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/ 16_019/0000797
ustES - Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions
CZ.02.1.01/0.0/0.0/16_019/0000803
OP RDE grant EVA4.0
PubMed
31919693
PubMed Central
PMC7002459
DOI
10.1007/s00442-019-04585-9
PII: 10.1007/s00442-019-04585-9
Knihovny.cz E-zdroje
- Klíčová slova
- Dendroecology, European Alps, Insect outbreaks, North Atlantic Oscillation, Population cycles, Zeiraphera diniana or griseana,
- MeSH
- epidemický výskyt choroby MeSH
- klimatické změny MeSH
- modřín * MeSH
- můry * MeSH
- populační dynamika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The sudden interruption of recurring larch budmoth (LBM; Zeiraphera diniana or griseana Gn.) outbreaks across the European Alps after 1982 was surprising, because populations had regularly oscillated every 8-9 years for the past 1200 years or more. Although ecophysiological evidence was limited and underlying processes remained uncertain, climate change has been indicated as a possible driver of this disruption. An unexpected, recent return of LBM population peaks in 2017 and 2018 provides insight into this insect's climate sensitivity. Here, we combine meteorological and dendrochronological data to explore the influence of temperature variation and atmospheric circulation on cyclic LBM outbreaks since the early 1950s. Anomalous cold European winters, associated with a persistent negative phase of the North Atlantic Oscillation, coincide with four consecutive epidemics between 1953 and 1982, and any of three warming-induced mechanisms could explain the system's failure thereafter: (1) high egg mortality, (2) asynchrony between egg hatch and foliage growth, and (3) upward shifts of outbreak epicentres. In demonstrating that LBM populations continued to oscillate every 8-9 years at sub-outbreak levels, this study emphasizes the relevance of winter temperatures on trophic interactions between insects and their host trees, as well as the importance of separating natural from anthropogenic climate forcing on population behaviour.
Czech University of Life Sciences Prague Forestry and Wood Sciences 165 21 Prague Czech Republic
Department of Geography Johannes Gutenberg University 55099 Mainz Germany
Department of Geography University of Cambridge Cambridge CB2 3EN UK
INRA UR633 Unité de Recherche de Zoologie Forestière Orléans 45075 France
Swiss Federal Research Institute WSL 8903 Birmensdorf Switzerland
USDA Forest Service Northern Research Station Morgantown WV 26505 USA
Zobrazit více v PubMed
Baltensweiler W. Why the larch bud moth cycle collapsed in the subalpine larch-cembran pine forests in the year 1990 for the first time since 1850. Oecologia. 1993;94:62–66. PubMed
Baltensweiler W, Rubli D. Dispersal – an important driving force of the cyclic population dynamics of the larch bud moth. Forest Snow Landsc Res. 1999;74:3–153.
Baltensweiler W, Benz G, Bovey P, Delucchi V. Dynamics of larch bud moth populations. Annu Rev Entomol. 1977;22:79–100.
Baltensweiler W, Weber UM, Cherubini P. Tracing the influence of larch-bud-moth insect outbreaks and weather conditions on larch tree-ring growth in Engadine (Switzerland) Oikos. 2008;117:161–172.
Battipaglia G, Büntgen U, McCloskey S, Blarquez O, Denis N, Paradis L, Brossier B, Fournier T, Carcaillet C. Long-term effects of climate and land-use change on larch budmoth outbreaks in the French Alps. Climate Res. 2014;62:1–14.
Benz G. Negative Rückkoppelungen durch Raum- und Nahrungskonkurrenz sowie zyklische Veränderung der Nahrungsgrundlage als Regelprinzip in der Populationsdynamik des Grauen Lärchenwicklers, Zeiraphera diniana (Guenée) (Lep., Tortricidae) Zeitschrift für Angewandte Entomologie. 1974;76:196–228.
Berryman A. Population cycles: the case for trophic interactions. Oxford: Oxford University Press; 2002.
Bjørnstad ON, Peltonen M, Liebhold AM, Baltensweiler W. Waves of larch budmoth outbreaks in the European Alps. Science. 2002;298:1020–1023. PubMed
Büntgen U, Krusic PJ. Non-traditional data and innovative methods for autumn climate change ecology. Climate Res. 2018;75:215–220.
Büntgen U, Frank DC, Liebhold A, Johnson D, Career M, Urbinati C, Grabner M, Nicolussi K, Levanic T, Esper J. Three centuries of insect outbreaks across the European Alps. New Phytol. 2009;182:929–941. PubMed
Büntgen U, Jenny H, Liebhold A, Mysterud A, Egli S, Nievergelt D, Stenseth NC, Bollmann K. European springtime temperature synchronizes ibex horn growth across the eastern Swiss Alps. Ecol Lett. 2014;17:303–313. PubMed PMC
Caudullo G, Welk E, San-Miguel-Ayanz J. Chorological maps for the main European woody species. Data Brief. 2017;12:662–666. PubMed PMC
Chen WY, van den Dool H. Sensitivity of teleconnection patterns to the sign of their primary action centre. Mon Weather Rev. 2003;131:2885–2899.
Esper J, Büntgen U, Frank DC, Nievergelt D, Liebhold A. 1200 years of regular outbreaks in alpine insects. Proc R Soc B. 2007;274:671–679. PubMed PMC
EUFORGEN (2018) http://www.euforgen.org/distribution_maps.html. Accessed 6 Sep 2018
Gärtner H, Nievergelt D. The core-microtome: a new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia. 2010;28:85–92.
Gärtner H, Schweingruber FH. Microscopic preparation techniques for plant stem analysis. Remagen: Kessel; 2013.
Hartl-Meier C, Esper J, Liebhold A, Konter O, Rothe A, Büntgen U. Effects of host abundance on larch budmoth outbreaks in the European Alps. Agric For Entomol. 2017;19:376–387.
Haylock MR, Hofstra N, Klein-Tank AMG, Klok EJ, Jones PD, New M. A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res A. 2008;113:D20119.
Hurrell JW. Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science. 1995;269:676–679. PubMed
Ims RA, Fuglei E. Trophic interaction cycles in tundra ecosystems and the impact of climate change. Bioscience. 2005;55:311–322.
Ims RA, Henden J, Killengreen ST. Collapsing population cycles. Trends Ecol Evol. 2008;23:79–86. PubMed
Johnson DM, Bjørnstad ON, Liebhold AM. Landscape geometry and traveling waves in the larch budmoth. Ecol Lett. 2004;7:967–974.
Johnson DM, Büntgen U, Kausrud K, Frank DC, Haynes KJ, Liebhold AM, Esper J, Stenseth NC. Climate change forces elevation shift in outbreak epicenter of larch budmoth. Proc Natl Acad Sci USA. 2010;107:20576–20581. PubMed PMC
Konter O, Esper J, Liebhold A, Kyncl T, Schneider L, Düthorn E, Büntgen U. Tree-ring evidence for the historical absence of cyclic larch bud moth outbreaks in the Tatra Mountains. Trees Struct Funct. 2015;29:809–814.
Kress A, Saurer M, Büntgen U, Treydte K, Bugmann H, Siegwolf R. Summer temperature dependency of larch budmoth outbreaks revealed by Alpine tree-ring isotope chronologies. Oecologia. 2009;160:353–365. PubMed
Moser L, Fonti P, Büntgen U, Franzen J, Esper J, Luterbacher J, Frank D. Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol. 2010;30:225–233. PubMed
Nola P, Morales M, Motta R, Villalba R. The role of larch budmoth (Zeiraphera diniana GN.) on forest succession in a larch (Larix decidua Mill.) and Swiss stone pine (Pinus cembra L.) stand in the Susa Valley (Piedmont, Italy) Trees Struct Funct. 2006;20:371–382.
Peters RL, Klesse S, Fonti P, Frank DC. Contribution of climate vs. larch budmoth outbreaks in regulating biomass accumulation in high-elevation forests. For Ecol Manage. 2017;401:147–158.
Post E, et al. Ecological dynamics across the Arctic associated with recent climate change. Science. 2009;325:1355–1358. PubMed
Rebstock GA. Climatic regime shifts and decadal-scale variability in calanoid copepod populations off southern California. Glob Change Biol. 2002;8:71–89.
Renner SS, Zohner CM. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu Rev Ecol Evol Syst. 2018;49:165–182.
Rodionov SN. A sequential algorithm for testing climate regime shifts. Geophys Res Lett. 2004;31:L09204.
Rolland C, Baltensweiler W, Petitcolas V. The potential for using Larix decidua ring widths in reconstructions of larch budmoth (Zeiraphera diniana) outbreak history: dendrochronological estimates compared with insect surveys. Trees Struct Funct. 2001;15:414–424.
Roques A, Goussard F. Amélioration de la technique de prévision des pullulations de la tordeuse du Mélèze, Zeiraphera diniana Guénée (Lép. Tortricidae) Acta Oecologica Oecologia Applicata. 1982;3:35–45.
Rosenzweig C, Neofotis P. Detection and attribution of anthropogenic climate change impacts. Wiley Interdiscip Rev. 2013;4:121–150.
Saulnier M, Roques A, Guibal F, Rozenberg P, Saracco G, Corona C, Edouard JL. Spatiotemporal heterogeneity of larch budmoth outbreaks in the French Alps over the last 500 years. Can J For Res. 2017;47:667–680.
Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan K, Lima M. Ecological effects of climate fluctuations. Science. 2002;297:1292–1296. PubMed
Turchin P, Wood SN, Ellner SP, Kendall BE, Murdoch WW, Fischlin A, Casas J, McCauley E, Briggs CJ. Dynamical effects of plant quality and parasitism on population cycles of larch budmoth. Ecology. 2003;84:1207–1214.
van Asch M, Salis L, Holleman LJM, van Lith B, Visser ME. Evolutionary response of the egg hatching date of a herbivorous insect under climate change. Nat Clim Change. 2012;3:244–248.
Wermelinger B, Forster B, Nievergelt D. Cycles and importance of the larch budmoth. WSL Fact Sheet. 2018;61:1–12.
Williams CM, Henry HAL, Sinclair BJ. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol Rev. 2015;90:214–235. PubMed