A comparison of low temperature biology of Pieris rapae from Ontario, Canada, and Yakutia, Far Eastern Russia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
31923628
DOI
10.1016/j.cbpa.2020.110649
PII: S1095-6433(20)30001-5
Knihovny.cz E-zdroje
- Klíčová slova
- Cryoprotectants, Freeze avoidance, Freeze tolerance, Metabolomics, Plasticity,
- MeSH
- fyziologická adaptace * MeSH
- hemolymfa fyziologie MeSH
- kryobiologie * MeSH
- motýli fyziologie MeSH
- nízká teplota * MeSH
- zmrazování * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Kanada MeSH
- Rusko MeSH
Low temperatures limit the distribution and abundance of ectotherms. However, many insects can survive low temperatures by employing one of two cold tolerance strategies: freeze avoidance or freeze tolerance. Very few species can employ both strategies, but those that do provide a rare opportunity to study the mechanisms that differentiate freeze tolerance and freeze avoidance. We showed that overwintering pupae of the cabbage white butterfly Pieris rapae can be freeze tolerant or freeze avoidant. Pupae from a population of P. rapae in northeastern Russia (Yakutsk) froze at c. -9.3 °C and were freeze-tolerant in 2002-2003 when overwintered outside. However, P. rapae from both Yakutsk and southern Canada (London) acclimated to milder laboratory conditions in 2014 and 2017 froze at lower temperatures (< -20 °C) and were freeze-avoidant. Summer-collected P. rapae larvae (collected in Yakutsk in 2016) were partially freeze-tolerant, and decreased the temperature at which they froze in response to starvation at mild low temperatures (4 °C) and repeated partial freezing events. By comparing similarly-acclimated P. rapae pupae from both populations, we identified molecules that may facilitate low temperature tolerance, including the hemolymph ice-binding molecules and several potential low molecular weight cryoprotectants. Pieris rapae from Yakutsk exhibited high physiological plasticity, accumulating cryoprotectants and almost doubling their hemolymph osmolality when supercooled to -15 °C for two weeks, while the London P. rapae population exhibited minimal plasticity. We hypothesize that physiological plasticity is an important adaptation to extreme low temperatures (i.e. in Yakutsk) and may facilitate the transition between freeze avoidance and freeze tolerance.
Department of Biology University of Western Ontario 1151 Richmond St N London ON N6A 5B7 Canada
Department of Bioscience Aarhus University Ny Munkegade 116 Aarhus 8000 Denmark
Citace poskytuje Crossref.org