Δ-FeOOH as Support for Immobilization Peroxidase: Optimization via a Chemometric Approach
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Excellence Project
UHK
CEP - Centrální evidence projektů
PubMed
31936386
PubMed Central
PMC7024332
DOI
10.3390/molecules25020259
PII: molecules25020259
Knihovny.cz E-zdroje
- Klíčová slova
- bioremediation, horseradish peroxidase, immobilization, iron oxide hydroxide,
- MeSH
- biokatalýza MeSH
- difrakce rentgenového záření MeSH
- enzymy imobilizované metabolismus MeSH
- křenová peroxidasa metabolismus ultrastruktura MeSH
- kyseliny kumarové chemie metabolismus MeSH
- nanočástice chemie MeSH
- oxidace-redukce MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- železité sloučeniny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- enzymy imobilizované MeSH
- ferric oxyhydroxide MeSH Prohlížeč
- ferulic acid MeSH Prohlížeč
- křenová peroxidasa MeSH
- kyseliny kumarové MeSH
- železité sloučeniny MeSH
Owing to their high surface area, stability, and functional groups on the surface, iron oxide hydroxide nanoparticles have attracted attention as enzymatic support. In this work, a chemometric approach was performed, aiming at the optimization of the horseradish peroxidase (HRP) immobilization process on Δ-FeOOH nanoparticles (NPs). The enzyme/NPs ratio (X1), pH (X2), temperature (X3), and time (X4) were the independent variables analyzed, and immobilized enzyme activity was the response variable (Y). The effects of the factors were studied using a factorial design at two levels (-1 and 1). The biocatalyst obtained was evaluated for the ferulic acid (FA) removal, a pollutant model. The materials were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The SEM images indicated changes in material morphology. The independent variables X1 (-0.57), X2 (0.71), and X4 (0.42) presented the significance effects estimate. The variable combinations resulted in two significance effects estimates, X1*X2 (-0.57) and X2*X4 (0.39). The immobilized HRP by optimized conditions (X1 = 1/63 (enzyme/NPs ratio, X2 = pH 8, X4 = 60 °C, and 30 min) showed high efficiency for FA oxidation (82%).
Department of Chemistry Engineering Federal University of São Carlos 13565 905 São Carlos SP Brazil
Department of Chemistry Federal University of Lavras N° 37 Lavras MG 37200 000 Brazil
Zobrazit více v PubMed
Horváth I.T., Anastas P.T. Green chemistry. Chem. Rev. 2007;107:2167–2168. doi: 10.1021/cr078380v. PubMed DOI
Barabás B., Fülöp O., Molontay R., Pályi G. Impact of the discovery of fluorous biphasic systems on chemistry: A statistical network analysis. ACS Sustain. Chem. Eng. 2017;5:8108–8118. doi: 10.1021/acssuschemeng.7b01722. DOI
Horváth I.T. Sustainable chemistry. Chem. Rev. 2018;118:369–371. doi: 10.1021/acs.chemrev.7b00721. PubMed DOI
Leahy D.K., Tucker J.L., Mergelsberg I., Dunn P.J., Kopach M.E., Purohit V.C. Seven important elements for an effective green chemistry program: An IQ Consortium Perspective. Org. Process Res. Dev. 2013;17:1099–1109. doi: 10.1021/op400192h. DOI
Veitch N.C. Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry. 2004;65:249–259. doi: 10.1016/j.phytochem.2003.10.022. PubMed DOI
Arriel Torres J., Batista Chagas P.M., Cristina Silva M., Dos Santos C.D., Duarte Corrêa A. Enzymatic oxidation of phenolic compounds in coffee processing wastewater. Water Sci. Technol. 2016;73:39–50. doi: 10.2166/wst.2015.332. PubMed DOI
Chang Q., Jiang G.D., Tang H.Q., Li N., Huang J., Wu L.Y. Enzymatic removal of chlorophenols using horseradish peroxidase immobilized on superparamagnetic Fe3O4/graphene oxide nanocomposite. Chin. J. Catal. 2015;36:961–968. doi: 10.1016/S1872-2067(15)60856-7. DOI
Cheng J., Ming Yu S., Zuo P. Horseradish Peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater. Water Res. 2006;40:283–290. doi: 10.1016/j.watres.2005.11.017. PubMed DOI
Kermad A., Sam S., Ghellai N., Khaldi K., Gabouze N. Horseradish peroxidase-modified porous silicon for phenol monitoring. Mater. Sci. Eng. B. 2013;178:1159–1164. doi: 10.1016/j.mseb.2013.07.010. DOI
Nicell J. Kinetics of horseradish peroxidase-catalysed polymerization and precipitation of aqueous 4-chlorophenol. J. Chem. Technol. Biotechnol. 1994;60:203–215. doi: 10.1002/jctb.280600214. DOI
Sheldon R. Enzyme immobilization: The quest for optimum performance. Adv. Synth. Catal. 2007;349:1289–1307. doi: 10.1002/adsc.200700082. DOI
Es I., Vieira J.D.G., Amaral A.C. Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl. Microbiol. Biotechnol. 2015;99:2065–2082. doi: 10.1007/s00253-015-6390-y. PubMed DOI
Sheldon R., Pelt S. Van Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013;42:6223–6235. doi: 10.1039/C3CS60075K. PubMed DOI
Brena B.M., Batista-Viera F. Immobilization of Enzymes. In: Guisan J.M., editor. Immobilization Enzymes and Cells. Volume 22. Humana Press; Totowa, NJ, USA: 2006. pp. 15–30.
Tavares T.S., Torres J.A., Silva M.C., Nogueira F.G.E., da Silva A.C., Ramalho T.C. Soybean peroxidase immobilized on δ-FeOOH as new magnetically recyclable biocatalyst for removal of ferulic acid. Bioprocess Biosyst. Eng. 2018;41:97–106. doi: 10.1007/s00449-017-1848-1. PubMed DOI
Silva M., Torres J., Nogueira F., Tavares T., Correa A.D., Oliveira L.C.A., Ramlho T.C. Immobilization of soybean peroxidase on silica-coated magnetic particles: A magnetically recoverable biocatalyst for pollutant removal. RSC Adv. 2016;6:83856–83863. doi: 10.1039/C6RA17167B. DOI
Guzik U., Hupert-Kocurek K., Wojcieszyńska D. Immobilization as a strategy for improving enzyme properties-application to oxidoreductases. Molecules. 2014;19:8995–9018. doi: 10.3390/molecules19078995. PubMed DOI PMC
Hernandez K., Fernandez-Lafuente R. Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzym. Microb. Technol. 2011;48:107–122. doi: 10.1016/j.enzmictec.2010.10.003. PubMed DOI
Hola K., Markova Z., Zoppellaro G., Tucek J., Zboril R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv. 2015;33:1162–1176. doi: 10.1016/j.biotechadv.2015.02.003. PubMed DOI
Chagas P., da Silva A.C., Passamani E.C., Ardisson J.D., de Oliveira L.C.A., Fabris J.D., Paniago R.M., Monteiro D.S., Pereira M.C. δ-FeOOH: A superparamagnetic material for controlled heat release under AC magnetic field. J. Nanoparticle Res. 2013;15:1544. doi: 10.1007/s11051-013-1544-2. DOI
Schwertmann U., Cornell R. Iron oxides in the Laboratory: Preparation and Characterization. Wiley-VCH; Weinheim, Germany: 2007.
Weissman S.A., Anderson N.G. Design of experiments (DOE) and process optimization. A review of recent publications. Org. Process Res. Dev. 2015;19:1605–1633. doi: 10.1021/op500169m. DOI
Lundstedt T., Seifert E., Abramo L., Thelin B., Nyström Å., Pettersen J., Bergman R. Experimental design and optimization. Chemom. Intell. Lab. Syst. 1998;42:3–40. doi: 10.1016/S0169-7439(98)00065-3. DOI
Khan A.A., Robinson D.S. Hydrogen donor specificity of mango isoperoxidases. Food Chem. 1994;49:407–410. doi: 10.1016/0308-8146(94)90013-2. DOI
Latimer Junior G.W., AOAC (Association of Official Analytical Chemists) Official Methods of Analysis. 19th ed. Plenum Press; New York, NY, USA: 2012.
Szymanski H.A. Progress in Infrared Spectroscopy. Springer; New York, NY, USA: 1962.
Goormaghtigh E., Ruysschaert J.-M., Raussens V. Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys. J. 2006;90:2946–2957. doi: 10.1529/biophysj.105.072017. PubMed DOI PMC
Tuček J., Machala L., Ono S., Namai A., Yoshikiyo M., Imoto K., Tokoro H., Ohkoshi S.I., Zbořil R. Zeta-Fe2O3–A new stable polymorph in iron (III) oxide family. Sci Rep. 2015;5:15091. doi: 10.1038/srep15091. PubMed DOI PMC
Barth A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta(BBA) Bioenerg. 2007;1767:1073–1101. doi: 10.1016/j.bbabio.2007.06.004. PubMed DOI
Kulal P.M., Dubal D.P., Lokhande C.D., Fulari V.J. Chemical synthesis of Fe2O3 thin films for supercapacitor application. J. Alloys Compd. 2011;509:2567–2571. doi: 10.1016/j.jallcom.2010.11.091. DOI
Chattopadhyay K., Mazumdar S. Structural and conformational stability of horseradish peroxidase: Effect of temperature and pH. Biochemistry. 2000;39:263–270. doi: 10.1021/bi990729o. PubMed DOI
Fan J., Zhao Z., Ding Z., Liu J. Synthesis of different crystallographic FeOOH catalysts for peroxymonosulfate activation towards organic matter degradation. RSC Adv. 2018;8:7269–7279. doi: 10.1039/C7RA12615H. PubMed DOI PMC
Henriksen A., Schuller D.J., Meno K., Welinder K.G., Smith A.T., Gajhede M. Structural interactions between horseradish peroxidase C and the substrate benzhydroxamic acid determined by X-ray crystallography. Biochemistry. 1998;37:8054–8060. doi: 10.1021/bi980234j. PubMed DOI
Xie T., Wang A., Huang L., Li H., Chen Z., Wang Q., Yin X. Recent advance in the support and technology used in enzyme immobilization. Afr. J. Biotechnol. 2009;8:4724–4733.
Pereira A.F., de Castro A.A., Soares F.V., Leal D.H.S., da Cunha E.F., Mancini D.T., Ramalho T.C. Development of technologies applied to the biodegradation of warfare nerve agents: Theoretical evidence for asymmetric homogeneous catalysis. Chem. Biol. Interact. 2019;308:323–331. doi: 10.1016/j.cbi.2019.06.007. PubMed DOI
CRamalho T., A de Castro A., RSilva D., Cristina Silva M., CCFranca T., JBennion B., Kuca K. Computational Enzymology and Organophosphorus Degrading Enzymes: Promising Approaches Toward Remediation Technologies of Warfare Agents and Pesticides. Curr. Med. Chem. 2016;23:1041–1061. doi: 10.2174/0929867323666160222113504. PubMed DOI