Δ-FeOOH as Support for Immobilization Peroxidase: Optimization via a Chemometric Approach

. 2020 Jan 08 ; 25 (2) : . [epub] 20200108

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31936386

Grantová podpora
Excellence Project UHK CEP - Centrální evidence projektů

Owing to their high surface area, stability, and functional groups on the surface, iron oxide hydroxide nanoparticles have attracted attention as enzymatic support. In this work, a chemometric approach was performed, aiming at the optimization of the horseradish peroxidase (HRP) immobilization process on Δ-FeOOH nanoparticles (NPs). The enzyme/NPs ratio (X1), pH (X2), temperature (X3), and time (X4) were the independent variables analyzed, and immobilized enzyme activity was the response variable (Y). The effects of the factors were studied using a factorial design at two levels (-1 and 1). The biocatalyst obtained was evaluated for the ferulic acid (FA) removal, a pollutant model. The materials were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The SEM images indicated changes in material morphology. The independent variables X1 (-0.57), X2 (0.71), and X4 (0.42) presented the significance effects estimate. The variable combinations resulted in two significance effects estimates, X1*X2 (-0.57) and X2*X4 (0.39). The immobilized HRP by optimized conditions (X1 = 1/63 (enzyme/NPs ratio, X2 = pH 8, X4 = 60 °C, and 30 min) showed high efficiency for FA oxidation (82%).

Zobrazit více v PubMed

Horváth I.T., Anastas P.T. Green chemistry. Chem. Rev. 2007;107:2167–2168. doi: 10.1021/cr078380v. PubMed DOI

Barabás B., Fülöp O., Molontay R., Pályi G. Impact of the discovery of fluorous biphasic systems on chemistry: A statistical network analysis. ACS Sustain. Chem. Eng. 2017;5:8108–8118. doi: 10.1021/acssuschemeng.7b01722. DOI

Horváth I.T. Sustainable chemistry. Chem. Rev. 2018;118:369–371. doi: 10.1021/acs.chemrev.7b00721. PubMed DOI

Leahy D.K., Tucker J.L., Mergelsberg I., Dunn P.J., Kopach M.E., Purohit V.C. Seven important elements for an effective green chemistry program: An IQ Consortium Perspective. Org. Process Res. Dev. 2013;17:1099–1109. doi: 10.1021/op400192h. DOI

Veitch N.C. Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry. 2004;65:249–259. doi: 10.1016/j.phytochem.2003.10.022. PubMed DOI

Arriel Torres J., Batista Chagas P.M., Cristina Silva M., Dos Santos C.D., Duarte Corrêa A. Enzymatic oxidation of phenolic compounds in coffee processing wastewater. Water Sci. Technol. 2016;73:39–50. doi: 10.2166/wst.2015.332. PubMed DOI

Chang Q., Jiang G.D., Tang H.Q., Li N., Huang J., Wu L.Y. Enzymatic removal of chlorophenols using horseradish peroxidase immobilized on superparamagnetic Fe3O4/graphene oxide nanocomposite. Chin. J. Catal. 2015;36:961–968. doi: 10.1016/S1872-2067(15)60856-7. DOI

Cheng J., Ming Yu S., Zuo P. Horseradish Peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater. Water Res. 2006;40:283–290. doi: 10.1016/j.watres.2005.11.017. PubMed DOI

Kermad A., Sam S., Ghellai N., Khaldi K., Gabouze N. Horseradish peroxidase-modified porous silicon for phenol monitoring. Mater. Sci. Eng. B. 2013;178:1159–1164. doi: 10.1016/j.mseb.2013.07.010. DOI

Nicell J. Kinetics of horseradish peroxidase-catalysed polymerization and precipitation of aqueous 4-chlorophenol. J. Chem. Technol. Biotechnol. 1994;60:203–215. doi: 10.1002/jctb.280600214. DOI

Sheldon R. Enzyme immobilization: The quest for optimum performance. Adv. Synth. Catal. 2007;349:1289–1307. doi: 10.1002/adsc.200700082. DOI

Es I., Vieira J.D.G., Amaral A.C. Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl. Microbiol. Biotechnol. 2015;99:2065–2082. doi: 10.1007/s00253-015-6390-y. PubMed DOI

Sheldon R., Pelt S. Van Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013;42:6223–6235. doi: 10.1039/C3CS60075K. PubMed DOI

Brena B.M., Batista-Viera F. Immobilization of Enzymes. In: Guisan J.M., editor. Immobilization Enzymes and Cells. Volume 22. Humana Press; Totowa, NJ, USA: 2006. pp. 15–30.

Tavares T.S., Torres J.A., Silva M.C., Nogueira F.G.E., da Silva A.C., Ramalho T.C. Soybean peroxidase immobilized on δ-FeOOH as new magnetically recyclable biocatalyst for removal of ferulic acid. Bioprocess Biosyst. Eng. 2018;41:97–106. doi: 10.1007/s00449-017-1848-1. PubMed DOI

Silva M., Torres J., Nogueira F., Tavares T., Correa A.D., Oliveira L.C.A., Ramlho T.C. Immobilization of soybean peroxidase on silica-coated magnetic particles: A magnetically recoverable biocatalyst for pollutant removal. RSC Adv. 2016;6:83856–83863. doi: 10.1039/C6RA17167B. DOI

Guzik U., Hupert-Kocurek K., Wojcieszyńska D. Immobilization as a strategy for improving enzyme properties-application to oxidoreductases. Molecules. 2014;19:8995–9018. doi: 10.3390/molecules19078995. PubMed DOI PMC

Hernandez K., Fernandez-Lafuente R. Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzym. Microb. Technol. 2011;48:107–122. doi: 10.1016/j.enzmictec.2010.10.003. PubMed DOI

Hola K., Markova Z., Zoppellaro G., Tucek J., Zboril R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv. 2015;33:1162–1176. doi: 10.1016/j.biotechadv.2015.02.003. PubMed DOI

Chagas P., da Silva A.C., Passamani E.C., Ardisson J.D., de Oliveira L.C.A., Fabris J.D., Paniago R.M., Monteiro D.S., Pereira M.C. δ-FeOOH: A superparamagnetic material for controlled heat release under AC magnetic field. J. Nanoparticle Res. 2013;15:1544. doi: 10.1007/s11051-013-1544-2. DOI

Schwertmann U., Cornell R. Iron oxides in the Laboratory: Preparation and Characterization. Wiley-VCH; Weinheim, Germany: 2007.

Weissman S.A., Anderson N.G. Design of experiments (DOE) and process optimization. A review of recent publications. Org. Process Res. Dev. 2015;19:1605–1633. doi: 10.1021/op500169m. DOI

Lundstedt T., Seifert E., Abramo L., Thelin B., Nyström Å., Pettersen J., Bergman R. Experimental design and optimization. Chemom. Intell. Lab. Syst. 1998;42:3–40. doi: 10.1016/S0169-7439(98)00065-3. DOI

Khan A.A., Robinson D.S. Hydrogen donor specificity of mango isoperoxidases. Food Chem. 1994;49:407–410. doi: 10.1016/0308-8146(94)90013-2. DOI

Latimer Junior G.W., AOAC (Association of Official Analytical Chemists) Official Methods of Analysis. 19th ed. Plenum Press; New York, NY, USA: 2012.

Szymanski H.A. Progress in Infrared Spectroscopy. Springer; New York, NY, USA: 1962.

Goormaghtigh E., Ruysschaert J.-M., Raussens V. Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys. J. 2006;90:2946–2957. doi: 10.1529/biophysj.105.072017. PubMed DOI PMC

Tuček J., Machala L., Ono S., Namai A., Yoshikiyo M., Imoto K., Tokoro H., Ohkoshi S.I., Zbořil R. Zeta-Fe2O3–A new stable polymorph in iron (III) oxide family. Sci Rep. 2015;5:15091. doi: 10.1038/srep15091. PubMed DOI PMC

Barth A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta(BBA) Bioenerg. 2007;1767:1073–1101. doi: 10.1016/j.bbabio.2007.06.004. PubMed DOI

Kulal P.M., Dubal D.P., Lokhande C.D., Fulari V.J. Chemical synthesis of Fe2O3 thin films for supercapacitor application. J. Alloys Compd. 2011;509:2567–2571. doi: 10.1016/j.jallcom.2010.11.091. DOI

Chattopadhyay K., Mazumdar S. Structural and conformational stability of horseradish peroxidase: Effect of temperature and pH. Biochemistry. 2000;39:263–270. doi: 10.1021/bi990729o. PubMed DOI

Fan J., Zhao Z., Ding Z., Liu J. Synthesis of different crystallographic FeOOH catalysts for peroxymonosulfate activation towards organic matter degradation. RSC Adv. 2018;8:7269–7279. doi: 10.1039/C7RA12615H. PubMed DOI PMC

Henriksen A., Schuller D.J., Meno K., Welinder K.G., Smith A.T., Gajhede M. Structural interactions between horseradish peroxidase C and the substrate benzhydroxamic acid determined by X-ray crystallography. Biochemistry. 1998;37:8054–8060. doi: 10.1021/bi980234j. PubMed DOI

Xie T., Wang A., Huang L., Li H., Chen Z., Wang Q., Yin X. Recent advance in the support and technology used in enzyme immobilization. Afr. J. Biotechnol. 2009;8:4724–4733.

Pereira A.F., de Castro A.A., Soares F.V., Leal D.H.S., da Cunha E.F., Mancini D.T., Ramalho T.C. Development of technologies applied to the biodegradation of warfare nerve agents: Theoretical evidence for asymmetric homogeneous catalysis. Chem. Biol. Interact. 2019;308:323–331. doi: 10.1016/j.cbi.2019.06.007. PubMed DOI

CRamalho T., A de Castro A., RSilva D., Cristina Silva M., CCFranca T., JBennion B., Kuca K. Computational Enzymology and Organophosphorus Degrading Enzymes: Promising Approaches Toward Remediation Technologies of Warfare Agents and Pesticides. Curr. Med. Chem. 2016;23:1041–1061. doi: 10.2174/0929867323666160222113504. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace