Theoretical Studies Aimed at Finding FLT3 Inhibitors and a Promising Compound and Molecular Pattern with Dual Aurora B/FLT3 Activity

. 2020 Apr 09 ; 25 (7) : . [epub] 20200409

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32283751

Grantová podpora
CAPES CNPq
Excellence project UHK CEP - Centrální evidence projektů

FLT3 and dual Aurora B/FLT3 inhibitors have shown relevance in the search for promising new anticancer compounds, mainly for acute myeloid leukemia (AML). This study was designed to investigate the interactions between human FLT3 in the kinase domain with several indolin-2-one derivatives, structurally similar to Sunitinib. Molegro Virtual Docker (MVD) software was utilized in docking analyses. The predicted model of the training group, considering nineteen amino acid residues, performed in Chemoface, achieved an R2 of 0.82, suggesting that the binding conformations of the ligands with FLT3 are reasonable, and the data can be used to predict the interaction energy of other FLT3 inhibitors with similar molecular patterns. The MolDock Score for energy for compound 1 showed more stable interaction energy (-233.25 kcal mol-1) than the other inhibitors studied, while Sunitinib presented as one of the least stable (-160.94 kcal mol-1). Compounds IAF70, IAF72, IAF75, IAF80, IAF84, and IAF88 can be highlighted as promising derivatives for synthesis and biological evaluation against FLT3. Furthermore, IAF79 can be considered to be a promising dual Aurora B/FLT3 inhibitor, and its molecular pattern can be exploited synthetically to search for new indolin-2-one derivatives that may become drugs used in the treatment of cancers, including AML.

Zobrazit více v PubMed

Berenstein R. Class III Receptor Tyrosine Kinases in Acute Leukemia—Biological Functions and Modern Laboratory Analysis. Biomark. Insights. 2015;10:1–14. doi: 10.4137/BMI.S22433. PubMed DOI PMC

Kayser S., Schlenk R.F., Londono M.C., Breitenbuecher F., Wittke K., Du J., Groner S., Späth D., Krauter J., Ganser A., et al. Insertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood. 2009;114:2386–2392. doi: 10.1182/blood-2009-03-209999. PubMed DOI

Port M., Böttcher M., Thol F., Ganser A., Schlenk R., Wasem J., Neumann A., Pouryamout L. Prognostic significance of FLT3 internal tandem duplication, nucleophosmin 1, and CEBPA gene mutations for acute myeloid leukemia patients with normal karyotype and younger than 60 years: A systematic review and meta-analysis. Ann. Hematol. 2014;93:1279–1286. doi: 10.1007/s00277-014-2072-6. PubMed DOI

Pastore D. FLT3 inhibitors in acute myeloid leukemia. J. Hematol. Oncol. 2018;11:133–144. doi: 10.1186/s13045-018-0675-4. PubMed DOI PMC

Bavetsias V., Crumpler S., Sun C., Avery S., Atrash B., Faisal A., Moore A.S., Kosmopoulou M., Brown N., Sheldrake P.W., et al. Optimization of Imidazo [4–b]pyridine-Based Kinase Inhibitors: Identification of a Dual FLT3/Aurora Kinase Inhibitor as an Orally Bioavailable Preclinical Development Candidate for the Treatment of Acute Myeloid Leukemia. J. Med. Chem. 2012;55:8721–8734. doi: 10.1021/jm300952s. PubMed DOI PMC

Moore A.S., Faisal A., de Castro G.D., Bavetsias V., Sun C., Atrash B., Valenti M., de Haven B.A., Avery S., Mair D., et al. Selective FLT3 inhibition of FLT3-ITD+ acute myeloid leukaemia resulting in secondary D835Y mutation: A model for emerging clinical resistance patterns. Leukemia. 2012;26:1462–1470. doi: 10.1038/leu.2012.52. PubMed DOI PMC

Ma F., Liu P., Lei M., Liu J., Wang H., Zhao S., Hu L. Design, synthesis and biological evaluation of indolin-2-one-based derivatives as potent, selective and efficacious inhibitors of FMS-like tyrosine kinase3 (FLT3) Eur. J. Med. Chem. 2017;127:72–86. doi: 10.1016/j.ejmech.2016.12.038. PubMed DOI

Zarrinkar P.P., Gunawardane R.N., Cramer M.D., Gardner M.F., Brigham D., Belli B., Karaman M.W., Pratz K.W., Pallares G., Chao Q., et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML) Blood. 2009;114:2984–2992. doi: 10.1182/blood-2009-05-222034. PubMed DOI PMC

Nguyen B., Williams A.B., Young D.J., Ma H., Li L., Levis M., Brown P., Small D. FLT3 activating mutations display differential sensitivity to multiple tyrosine kinase inhibitors. Oncotarget. 2017;8:10931–10944. doi: 10.18632/oncotarget.14539. PubMed DOI PMC

Fernandes I.A., Assis T.M., Rosa I.A., da Cunha E.F.F. Indolin-2-one Derivatives: Theoretical Studies Aimed at Finding More Potent Aurora B Kinase Inhibitors. Lett. Drug Des. Discov. 2019;16:138–152. doi: 10.2174/1570180815666180528090945. DOI

Chern J.W., Jagtap A.D., Wang H.C., Chen G.S. Indolin-2-one Derivatives as Protein Kinase Inhibitors. WO 2013/158373 A1. 2013 Oct 24

Zorn J.A., Wang Q., Fujimura E., Barros T., Kuriyan J. Crystal structure of the FLT3 kinase domain bound to the inhibitor Quizartinib (AC220) PLoS ONE. 2015;10:e0121177. doi: 10.1371/journal.pone.0121177. PubMed DOI PMC

Hopfinger A.J., Wang S., Tokarski J.S., Jin B., Albuquerque M., Madhav P.J., Duraiswami C. Construction of 3D-QSAR Models Using the 4D-QSAR Analysis Formalism. J. Am. Chem. Soc. 1997;119:10509–10524. doi: 10.1021/ja9718937. DOI

Gehlhaar D.K., Verkhivker G.M., Rejto P.A., Sherman C.J., Fogel D.R., Fogel L.J., Freer S.T. Molecular Recognition of the Inhibitor AG-1343 by HIV-1 Protease: Conformationally Flexible Docking by Evolutionary Programming. Chem. Biol. 1995;2:317–324. doi: 10.1016/1074-5521(95)90050-0. PubMed DOI

Thomsen R., Christensen M.H. MolDock:  A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI

Guimarães A.P., França T.C.C., Ramalho T.C., Rennó M.N., da Cunha E.F.F., Matos K.S., Mancini D.T., Kuca K. Docking studies and effects of syn-anti isomery of oximes derived from pyridine imidazol bicycled systems as potential human acetylcholinesterase reactivators. J. Appl. Biomed. 2011;9:163–171. doi: 10.2478/v10136-009-0037-1. DOI

Ramalho T.C., França T.C.C., Renno M.N., Guimaraes A.P., da Cunha E.F.F., Kuca K. Development of new acetylcholinesterase reactivators: Molecular modeling versus in vitro data. Chem. Biol. Interact. 2010;185:73–77. doi: 10.1016/j.cbi.2010.02.026. PubMed DOI

Da Cunha E.F.F., Ramalho T.C., Maia E.R., de Alencastro R.B. The search for new DHFR inhibitors: A review of patents, January 2001 February 2005. Expert Opin. Ther. Pat. 2005;8:967–986. doi: 10.1517/13543776.15.8.967. DOI

Ramalho T.C., da Cunha E.F.F., de Alencastro R.B. A density functional study on the complexation of ethambutol with divalent cations. J. Mol. Struct. 2004;676:149–153. doi: 10.1016/j.theochem.2004.02.006. DOI

Tavares T.S., da rocha E.P., Nogueira F.G.E., Torres J.A., Silva M.C., Kuca K., Ramalho T.C. Δ-FeOOH as Support for Immobilization Peroxidase: Optimization via a Chemometric Approach. Molecules. 2020;25:259. doi: 10.3390/molecules25020259. PubMed DOI PMC

Lam S.Y.S., Leung A.Y.H. Overcoming Resistance to FLT3 Inhibitors in the Treatment of FLT3-Mutated AML. Int. J. Mol. Sci. 2020;21:1537. doi: 10.3390/ijms21041537. PubMed DOI PMC

Bohmer A., Barz S., Schwab K., Kolve U., Gabel A., Kirkpatrick J., Ohlenshlager O., Gorlach M., Bohmer F.D. Modulation of FLT3 signal transduction through cytoplasmic cysteine residues indicates the potential for redox regulation. Redox Biol. 2020;28:101325. doi: 10.1016/j.redox.2019.101325. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...