Theoretical Studies Aimed at Finding FLT3 Inhibitors and a Promising Compound and Molecular Pattern with Dual Aurora B/FLT3 Activity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CAPES
CNPq
Excellence project
UHK
CEP - Centrální evidence projektů
PubMed
32283751
PubMed Central
PMC7181172
DOI
10.3390/molecules25071726
PII: molecules25071726
Knihovny.cz E-zdroje
- Klíčová slova
- computational chemistry, dual Aurora B/FLT3 inhibitors, indolin−2-one derivatives,
- MeSH
- aktivace enzymů účinky léků MeSH
- algoritmy MeSH
- Aurora kinasa B antagonisté a inhibitory chemie MeSH
- inhibiční koncentrace 50 MeSH
- inhibitory proteinkinas chemie farmakologie MeSH
- lidé MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- teoretické modely * MeSH
- tyrosinkinasa 3 podobná fms antagonisté a inhibitory chemie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AURKB protein, human MeSH Prohlížeč
- Aurora kinasa B MeSH
- FLT3 protein, human MeSH Prohlížeč
- inhibitory proteinkinas MeSH
- tyrosinkinasa 3 podobná fms MeSH
FLT3 and dual Aurora B/FLT3 inhibitors have shown relevance in the search for promising new anticancer compounds, mainly for acute myeloid leukemia (AML). This study was designed to investigate the interactions between human FLT3 in the kinase domain with several indolin-2-one derivatives, structurally similar to Sunitinib. Molegro Virtual Docker (MVD) software was utilized in docking analyses. The predicted model of the training group, considering nineteen amino acid residues, performed in Chemoface, achieved an R2 of 0.82, suggesting that the binding conformations of the ligands with FLT3 are reasonable, and the data can be used to predict the interaction energy of other FLT3 inhibitors with similar molecular patterns. The MolDock Score for energy for compound 1 showed more stable interaction energy (-233.25 kcal mol-1) than the other inhibitors studied, while Sunitinib presented as one of the least stable (-160.94 kcal mol-1). Compounds IAF70, IAF72, IAF75, IAF80, IAF84, and IAF88 can be highlighted as promising derivatives for synthesis and biological evaluation against FLT3. Furthermore, IAF79 can be considered to be a promising dual Aurora B/FLT3 inhibitor, and its molecular pattern can be exploited synthetically to search for new indolin-2-one derivatives that may become drugs used in the treatment of cancers, including AML.
Zobrazit více v PubMed
Berenstein R. Class III Receptor Tyrosine Kinases in Acute Leukemia—Biological Functions and Modern Laboratory Analysis. Biomark. Insights. 2015;10:1–14. doi: 10.4137/BMI.S22433. PubMed DOI PMC
Kayser S., Schlenk R.F., Londono M.C., Breitenbuecher F., Wittke K., Du J., Groner S., Späth D., Krauter J., Ganser A., et al. Insertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood. 2009;114:2386–2392. doi: 10.1182/blood-2009-03-209999. PubMed DOI
Port M., Böttcher M., Thol F., Ganser A., Schlenk R., Wasem J., Neumann A., Pouryamout L. Prognostic significance of FLT3 internal tandem duplication, nucleophosmin 1, and CEBPA gene mutations for acute myeloid leukemia patients with normal karyotype and younger than 60 years: A systematic review and meta-analysis. Ann. Hematol. 2014;93:1279–1286. doi: 10.1007/s00277-014-2072-6. PubMed DOI
Pastore D. FLT3 inhibitors in acute myeloid leukemia. J. Hematol. Oncol. 2018;11:133–144. doi: 10.1186/s13045-018-0675-4. PubMed DOI PMC
Bavetsias V., Crumpler S., Sun C., Avery S., Atrash B., Faisal A., Moore A.S., Kosmopoulou M., Brown N., Sheldrake P.W., et al. Optimization of Imidazo [4–b]pyridine-Based Kinase Inhibitors: Identification of a Dual FLT3/Aurora Kinase Inhibitor as an Orally Bioavailable Preclinical Development Candidate for the Treatment of Acute Myeloid Leukemia. J. Med. Chem. 2012;55:8721–8734. doi: 10.1021/jm300952s. PubMed DOI PMC
Moore A.S., Faisal A., de Castro G.D., Bavetsias V., Sun C., Atrash B., Valenti M., de Haven B.A., Avery S., Mair D., et al. Selective FLT3 inhibition of FLT3-ITD+ acute myeloid leukaemia resulting in secondary D835Y mutation: A model for emerging clinical resistance patterns. Leukemia. 2012;26:1462–1470. doi: 10.1038/leu.2012.52. PubMed DOI PMC
Ma F., Liu P., Lei M., Liu J., Wang H., Zhao S., Hu L. Design, synthesis and biological evaluation of indolin-2-one-based derivatives as potent, selective and efficacious inhibitors of FMS-like tyrosine kinase3 (FLT3) Eur. J. Med. Chem. 2017;127:72–86. doi: 10.1016/j.ejmech.2016.12.038. PubMed DOI
Zarrinkar P.P., Gunawardane R.N., Cramer M.D., Gardner M.F., Brigham D., Belli B., Karaman M.W., Pratz K.W., Pallares G., Chao Q., et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML) Blood. 2009;114:2984–2992. doi: 10.1182/blood-2009-05-222034. PubMed DOI PMC
Nguyen B., Williams A.B., Young D.J., Ma H., Li L., Levis M., Brown P., Small D. FLT3 activating mutations display differential sensitivity to multiple tyrosine kinase inhibitors. Oncotarget. 2017;8:10931–10944. doi: 10.18632/oncotarget.14539. PubMed DOI PMC
Fernandes I.A., Assis T.M., Rosa I.A., da Cunha E.F.F. Indolin-2-one Derivatives: Theoretical Studies Aimed at Finding More Potent Aurora B Kinase Inhibitors. Lett. Drug Des. Discov. 2019;16:138–152. doi: 10.2174/1570180815666180528090945. DOI
Chern J.W., Jagtap A.D., Wang H.C., Chen G.S. Indolin-2-one Derivatives as Protein Kinase Inhibitors. WO 2013/158373 A1. 2013 Oct 24
Zorn J.A., Wang Q., Fujimura E., Barros T., Kuriyan J. Crystal structure of the FLT3 kinase domain bound to the inhibitor Quizartinib (AC220) PLoS ONE. 2015;10:e0121177. doi: 10.1371/journal.pone.0121177. PubMed DOI PMC
Hopfinger A.J., Wang S., Tokarski J.S., Jin B., Albuquerque M., Madhav P.J., Duraiswami C. Construction of 3D-QSAR Models Using the 4D-QSAR Analysis Formalism. J. Am. Chem. Soc. 1997;119:10509–10524. doi: 10.1021/ja9718937. DOI
Gehlhaar D.K., Verkhivker G.M., Rejto P.A., Sherman C.J., Fogel D.R., Fogel L.J., Freer S.T. Molecular Recognition of the Inhibitor AG-1343 by HIV-1 Protease: Conformationally Flexible Docking by Evolutionary Programming. Chem. Biol. 1995;2:317–324. doi: 10.1016/1074-5521(95)90050-0. PubMed DOI
Thomsen R., Christensen M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI
Guimarães A.P., França T.C.C., Ramalho T.C., Rennó M.N., da Cunha E.F.F., Matos K.S., Mancini D.T., Kuca K. Docking studies and effects of syn-anti isomery of oximes derived from pyridine imidazol bicycled systems as potential human acetylcholinesterase reactivators. J. Appl. Biomed. 2011;9:163–171. doi: 10.2478/v10136-009-0037-1. DOI
Ramalho T.C., França T.C.C., Renno M.N., Guimaraes A.P., da Cunha E.F.F., Kuca K. Development of new acetylcholinesterase reactivators: Molecular modeling versus in vitro data. Chem. Biol. Interact. 2010;185:73–77. doi: 10.1016/j.cbi.2010.02.026. PubMed DOI
Da Cunha E.F.F., Ramalho T.C., Maia E.R., de Alencastro R.B. The search for new DHFR inhibitors: A review of patents, January 2001 February 2005. Expert Opin. Ther. Pat. 2005;8:967–986. doi: 10.1517/13543776.15.8.967. DOI
Ramalho T.C., da Cunha E.F.F., de Alencastro R.B. A density functional study on the complexation of ethambutol with divalent cations. J. Mol. Struct. 2004;676:149–153. doi: 10.1016/j.theochem.2004.02.006. DOI
Tavares T.S., da rocha E.P., Nogueira F.G.E., Torres J.A., Silva M.C., Kuca K., Ramalho T.C. Δ-FeOOH as Support for Immobilization Peroxidase: Optimization via a Chemometric Approach. Molecules. 2020;25:259. doi: 10.3390/molecules25020259. PubMed DOI PMC
Lam S.Y.S., Leung A.Y.H. Overcoming Resistance to FLT3 Inhibitors in the Treatment of FLT3-Mutated AML. Int. J. Mol. Sci. 2020;21:1537. doi: 10.3390/ijms21041537. PubMed DOI PMC
Bohmer A., Barz S., Schwab K., Kolve U., Gabel A., Kirkpatrick J., Ohlenshlager O., Gorlach M., Bohmer F.D. Modulation of FLT3 signal transduction through cytoplasmic cysteine residues indicates the potential for redox regulation. Redox Biol. 2020;28:101325. doi: 10.1016/j.redox.2019.101325. PubMed DOI PMC