Cysteine-Targeted Insecticides against A. gambiae Acetylcholinesterase Are Neither Selective nor Reversible Inhibitors
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31938465
PubMed Central
PMC6956356
DOI
10.1021/acsmedchemlett.9b00477
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Acetylcholinesterase cysteine-targeted insecticides against malaria vector Anopheles gambia and other mosquitos have already been introduced. We have applied the olefin metathesis for the preparation of cysteine-targeted insecticides in high yields. The prepared compounds with either a succinimide or maleimide moiety were evaluated on Anopheles gambiae and human acetylcholinesterase with relatively high irreversible inhibition of both enzymes but poor selectivity. The concept of cysteine binding was not proved by several methods, and poor stability was observed of the chosen most potent/selective compounds in a water/buffer environment. Thus, our findings do not support the proposed concept of cysteine-targeted selective insecticides for the prepared series of succinimide or maleimide compounds.
Zobrazit více v PubMed
World Malaria Report 2016; World Health Organization: Geneva; 2016. Licence: CC BY-NC-SA 3.0 IGO.
Fox C. M.; Kim K.-S.; Cregan P. B.; Hill C. B.; Hartman G. L.; Diers B. W. Inheritance of Soybean Aphid Resistance in 21 Soybean Plant Introductions. Theor. Appl. Genet. 2014, 127 (1), 43–50. 10.1007/s00122-013-2199-1. PubMed DOI
Pang Y. P. Insect Acetylcholinesterase as a Target for Effective and Environmentally Safe Insecticides. Adv. Insect Physiol. 2014, 46, 435–494. 10.1016/B978-0-12-417010-0.00006-9. DOI
Johnson R. M. Honey Bee Toxicology. Annu. Rev. Entomol. 2015, 60, 415–434. 10.1146/annurev-ento-011613-162005. PubMed DOI
Casida J. E.; Durkin K. A. Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects. Annu. Rev. Entomol. 2013, 58, 99–117. 10.1146/annurev-ento-120811-153645. PubMed DOI
Gorecki L.; Korabecny J.; Musilek K.; Malinak D.; Nepovimova E.; Dolezal R.; Jun D.; Soukup O.; Kuca K. SAR Study to Find Optimal Cholinesterase Reactivator against Organophosphorous Nerve Agents and Pesticides. Arch. Toxicol. 2016, 90 (12), 2831–2859. 10.1007/s00204-016-1827-3. PubMed DOI
Colović M. B.; Krstić D. Z.; Lazarević-Pašti T. D.; Bondžić A. M.; Vasić V. M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013, 11 (3), 315–335. 10.2174/1570159X11311030006. PubMed DOI PMC
Engdahl C.; Knutsson S.; Ekström F.; Linusson A. Discovery of Selective Inhibitors Targeting Acetylcholinesterase 1 from Disease-Transmitting Mosquitoes. J. Med. Chem. 2016, 59 (20), 9409–9421. 10.1021/acs.jmedchem.6b00967. PubMed DOI
Wong D. M.; Li J.; Chen Q.-H.; Han Q.; Mutunga J. M.; Wysinski A.; Anderson T. D.; Ding H.; Carpenetti T. L.; Verma A.; et al. Select Small Core Structure Carbamates Exhibit High Contact Toxicity to “Carbamate-Resistant” Strain Malaria Mosquitoes, Anopheles Gambiae (Akron). PLoS One 2012, 7 (10), e4671210.1371/journal.pone.0046712. PubMed DOI PMC
Hartsel J. A.; Wong D. M.; Mutunga J. M.; Ma M.; Anderson T. D.; Wysinski A.; Islam R.; Wong E. A.; Paulson S. L.; Li J.; et al. Re-Engineering Aryl Methylcarbamates to Confer High Selectivity for Inhibition of Anopheles Gambiae versus Human Acetylcholinesterase. Bioorg. Med. Chem. Lett. 2012, 22 (14), 4593–4598. 10.1016/j.bmcl.2012.05.103. PubMed DOI PMC
Carlier P. R.; Bloomquist J. R.; Totrov M.; Li J. Discovery of Species-Selective and Resistance-Breaking Anticholinesterase Insecticides for the Malaria Mosquito. Curr. Med. Chem. 2017, 24 (27), 2946–2958. 10.2174/0929867324666170206130024. PubMed DOI PMC
Pang Y.-P.; Brimijoin S.; Ragsdale D. W.; Zhu K. Y.; Suranyi R. Novel and Viable Acetylcholinesterase Target Site for Developing Effective and Environmentally Safe Insecticides. Curr. Drug Targets 2012, 13 (4), 471–482. 10.2174/138945012799499703. PubMed DOI PMC
Harel M.; Kryger G.; Rosenberry T. L.; Mallender W. D.; Lewis T.; Fletcher R. J.; Guss J. M.; Silman I.; Sussman J. L. Three-Dimensional Structures of Drosophila Melanogaster Acetylcholinesterase and of Its Complexes with Two Potent Inhibitors. Protein Sci. 2000, 9 (6), 1063–1072. 10.1110/ps.9.6.1063. PubMed DOI PMC
Schmidt M.; Hrabcova V.; Jun D.; Kuca K.; Musilek K. Vector Control and Insecticidal Resistance in the African Malaria Mosquito Anopheles Gambiae. Chem. Res. Toxicol. 2018, 31 (7), 534–547. 10.1021/acs.chemrestox.7b00285. PubMed DOI
Dou D.; Park J. G.; Rana S.; Madden B. J.; Jiang H.; Pang Y.-P. Novel Selective and Irreversible Mosquito Acetylcholinesterase Inhibitors for Controlling Malaria and Other Mosquito-Borne Diseases. Sci. Rep. 2013, 3, 1068.10.1038/srep01068. PubMed DOI PMC
Trzaskowski J.; Quinzler D.; Bährle C.; Mecking S. Aliphatic Long-Chain C20 Polyesters from Olefin Metathesis. Macromol. Rapid Commun. 2011, 32 (17), 1352–1356. 10.1002/marc.201100319. PubMed DOI
Chang J.; Zhang S.-J.; Jiang Y.-W.; Xu L.; Yu J.-M.; Zhou W.-J.; Sun X. Design, Synthesis, and Antibacterial Activity of Demethylvancomycin Analogues against Drug-Resistant Bacteria. ChemMedChem 2013, 8 (6), 976–984. 10.1002/cmdc.201300011. PubMed DOI
Fujita D.; Suzuki K.; Sato S.; Yagi-Utsumi M.; Kurimoto E.; Yamaguchi Y.; Kato K.; Fujita M. Synthesis of a Bridging Ligand with a Non-Denatured Protein Pendant: Toward Protein Encapsulation in a Coordination Cage. Chem. Lett. 2012, 41 (3), 313–315. 10.1246/cl.2012.313. DOI
Jiang H.; Liu S.; Zhao P.; Pope C. Recombinant Expression and Biochemical Characterization of the Catalytic Domain of Acetylcholinesterase-1 from the African Malaria Mosquito, Anopheles Gambiae. Insect Biochem. Mol. Biol. 2009, 39 (9), 646–653. 10.1016/j.ibmb.2009.07.002. PubMed DOI PMC
Engdahl C.; Knutsson S.; Fredriksson S.-Å.; Linusson A.; Bucht G.; Ekström F. Acetylcholinesterases from the Disease Vectors Aedes Aegypti and Anopheles Gambiae: Functional Characterization and Comparisons with Vertebrate Orthologues. PLoS One 2015, 10 (10), e013859810.1371/journal.pone.0138598. PubMed DOI PMC
Ellman G. L.; Courtney K. D.; Andres V.; Feather-Stone R. M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. 10.1016/0006-2952(61)90145-9. PubMed DOI
Ramsay R. R.; Tipton K. F. Assessment of Enzyme Inhibition: A Review with Examples from the Development of Monoamine Oxidase and Cholinesterase Inhibitory Drugs. Molecules 2017, 22 (7), 1192.10.3390/molecules22071192. PubMed DOI PMC
Pandolfi F.; De Vita D.; Bortolami M.; Coluccia A.; Di Santo R.; Costi R.; Andrisano V.; Alabiso F.; Bergamini C.; Fato R.; et al. New Pyridine Derivatives as Inhibitors of Acetylcholinesterase and Amyloid Aggregation. Eur. J. Med. Chem. 2017, 141, 197–210. 10.1016/j.ejmech.2017.09.022. PubMed DOI
Trujillo-Ferrara J.; Vázquez I.; Espinosa J.; Santillan R.; Farfán N.; Höpfl H. Reversible and Irreversible Inhibitory Activity of Succinic and Maleic Acid Derivatives on Acetylcholinesterase. Eur. J. Pharm. Sci. 2003, 18 (5), 313–322. 10.1016/S0928-0987(03)00023-X. PubMed DOI
Cheung J.; Mahmood A.; Kalathur R.; Liu L.; Carlier P. R. Structure of the G119S Mutant Acetylcholinesterase of the Malaria Vector Anopheles Gambiae Reveals Basis of Insecticide Resistance. Structure 2018, 26 (1), 130–136.e2. 10.1016/j.str.2017.11.021. PubMed DOI PMC
Nanda J. S.; Lorsch J. R. Labeling of a Protein with Fluorophores Using Maleimide Derivitization. Methods Enzymol. 2014, 536, 79–86. 10.1016/B978-0-12-420070-8.00007-6. PubMed DOI
Wang Z.; Zhang Y.; Zhang H.; Harrington P. B.; Chen H. Fast and Selective Modification of Thiol Proteins/Peptides by N-(Phenylseleno)phthalimide. J. Am. Soc. Mass Spectrom. 2012, 23 (3), 520–529. 10.1007/s13361-011-0317-3. PubMed DOI PMC
Brominated oxime nucleophiles are efficiently reactivating cholinesterases inhibited by nerve agents