1,2,4-Triazole-based anticonvulsant agents with additional ROS scavenging activity are effective in a model of pharmacoresistant epilepsy
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
32253957
PubMed Central
PMC7178883
DOI
10.1080/14756366.2020.1748026
Knihovny.cz E-zdroje
- Klíčová slova
- 6 Hz psychomotor seizures, carbonic anhydrases, cholinesterase inhibitors, mitochondrial potential, total ROS activity,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- antikonvulziva chemická syntéza chemie farmakologie MeSH
- antioxidancia chemická syntéza chemie farmakologie MeSH
- bifenylové sloučeniny antagonisté a inhibitory MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory chemická syntéza chemie farmakologie MeSH
- epilepsie farmakoterapie metabolismus MeSH
- inhibitory karboanhydras chemická syntéza chemie farmakologie MeSH
- karboanhydrasy metabolismus MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- oxidační stres účinky léků MeSH
- pikráty antagonisté a inhibitory MeSH
- reaktivní formy kyslíku metabolismus MeSH
- triazoly chemická syntéza chemie farmakologie MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1,1-diphenyl-2-picrylhydrazyl MeSH Prohlížeč
- 1,2,4-triazole MeSH Prohlížeč
- acetylcholinesterasa MeSH
- antikonvulziva MeSH
- antioxidancia MeSH
- bifenylové sloučeniny MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- inhibitory karboanhydras MeSH
- karboanhydrasy MeSH
- pikráty MeSH
- reaktivní formy kyslíku MeSH
- triazoly MeSH
There are numerous studies supporting the contribution of oxidative stress to the pathogenesis of epilepsy. Prolonged oxidative stress is associated with the overexpression of ATP-binding cassette transporters, which results in antiepileptic drugs resistance. During our studies, three 1,2,4-triazole-3-thione derivatives were evaluated for the antioxidant activity and anticonvulsant effect in the 6 Hz model of pharmacoresistant epilepsy. The investigated compounds exhibited 2-3 times more potent anticonvulsant activity than valproic acid in 6 Hz test in mice, which is well-established preclinical model of pharmacoresistant epilepsy. The antioxidant/ROS scavenging activity was confirmed in both single-electron transfer-based methods (DPPH and CUPRAC) and during flow cytometric analysis of total ROS activity in U-87 MG cells. Based on the enzymatic studies on human carbonic anhydrases (CAs), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), one can assume that the herein investigated drug candidates will not impair the cognitive processes mediated by CAs and will have minimal off-target cholinergic effects.
Zobrazit více v PubMed
Behr C, Goltzene MA, Kosmalski G, et al. . Epidemiology of epilepsy. Rev Neurol 2016;172:27–36. PubMed
Harman D. The biologic clock: the mitochondria?. J Am Geriatr Soc 1972;20:145–7. PubMed
Pearson-Smith JN, Patel M.. Metabolic dysfunction and oxidative stress in epilepsy. Int J Mol Sci 2017;18:2365. PubMed PMC
Aguiar CCT, Almeida AB, Araujo PVP, et al. . Oxidative stress and epilepsy: literature review. Oxid Med Cell Longev 2012;2012:1–12. article ID 795259. PubMed PMC
Patel M. Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 2004;37:1951–62. PubMed
Dingledine R, Varvel NH, Dudek FE.. When and how do seizures kill neurons, and is cell death relevant to epileptogenesis? Adv Exp Med Biol 2014;813:109–22. PubMed PMC
Grewal GK, Kukal S, Kanojia N, et al. . Effect of oxidative stress on ABC transporters: contribution to epilepsy pharmacoresistance. Molecules 2017;22:365. PubMed PMC
Behrend L, Henderson G, Zwacka R.. Molecular mechanisms of signalling molecular mechanisms of signalling transformation. Biochem Soc Trans 2003;31:1441–4. PubMed
Kalilani L, Sun X, Pelgrims B, et al. . The epidemiology of drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsia 2018;59:2179–93. PubMed
Kaproń B, Łuszczki JJ, Siwek A, et al. . Preclinical evaluation of 1,2,4-triazole-based compounds targeting voltage-gated sodium channels (VGSCs) as promising anticonvulsant drug candidates. Bioorg Chem 2020;94:103355. PubMed
Kaproń B, Łuszczki JJ, Płazińska A, et al. . Development of the 1,2,4-triazole-based anticonvulsant drug candidates acting on the voltage-gated sodium channels. Insights from in-vivo, in-vitro, and in-silico studies. Eur J Pharm Sci 2019;129:42–57. PubMed
Kaproń B, Łuszczki J, Paneth A, et al. . Molecular mechanism of action and safety of 5-(3-chlorophenyl)-4-hexyl-2,4-dihydro-3H-1,2,4-triazole-3-thione – a novel anticonvulsant drug candidate. Int J Med Sci 2017;14:741–9. PubMed PMC
Plech T, Luszczki JJ, Wujec M, et al. . Synthesis, characterization and preliminary anticonvulsant evaluation of some 4-alkyl-1,2,4-triazoles. Eur J Med Chem 2013;60:208–15. PubMed
Plech T, Kaproń B, Łuszczki JJ, et al. . Studies on the anticonvulsant activity of 4-alkyl-1,2,4-triazole-3-thiones and their effect on gabaergic system. Eur J Med Chem 2014;86:690–9. PubMed
Plech T, Kaproń B, Łuszczki JJ, et al. . Studies on the anticonvulsant activity and influence on GABA-ergic neurotransmission of 1,2,4-triazole-3-thione-based compounds. Molecules 2014;19:11279–99. PubMed PMC
Łuszczki JJ, Marzeda P, Gut-Lepiech A, et al. . New derivative of 1,2,4-triazole-3-thione (TP427) potentiates the anticonvulsant action of valproate, but not that of carbamazepine, phenytoin or phenobarbital in the mouse tonic-clonic seizure model. Pharmacol Rep 2019;71:299–305. PubMed
Luszczki JJ, Patrzylas P, Zagaja M, et al. . Effects of arachidonyl-2’-chloroethylamide (ACEA) on the protective action of various antiepileptic drugs in the 6-Hz corneal stimulation model in mice. PLoS One 2017;12:e0183873. PubMed PMC
Litchfield JT, Jr, Wilcoxon F.. A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 1949;96:99–113. PubMed
Kapron B, Czarnomysy R, Paneth A, et al. . Dual antibacterial and anticancer activity of 4-benzoyl-1-dichlorobenzoylthiosemicarbazide derivatives. Anticancer Agents Med Chem 2018;18:529–40. PubMed
Apak R, Güçlü K, Özyürek M, et al. . Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim Acta 2008;160:413–9.
Krasavin M, Žalubovskis R, Grandāne A, et al. . Sulfocoumarins as dual inhibitors of human carbonic anhydrase isoforms IX/XII and of human thioredoxin reductase. J Enzyme Inhib Med Chem 2020;35:506–10. PubMed PMC
Küçükbay H, Buğday N, Küçükbay FZ, et al. . Synthesis and human carbonic anhydrase I, II, VA, and XII inhibition with novel amino acid–sulphonamide conjugates. J Enzyme Inhib Med Chem 2020;35:489–97. PubMed PMC
Ellman GL, Courtney KD, Andres V, et al. . A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95. PubMed
Gorecki L, Andrys R, Schmidt M, et al. . Cysteine-targeted insecticides against A. gambiae acetylcholinesterase are neither selective nor reversible inhibitors. ACS Med Chem Lett 2020;11:65–71. PubMed PMC
Barton ME, Klein BD, Wolf HH, et al. . Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res 2001;47:217–27. PubMed
Potschka H. Animal models of drug-resistant epilepsy. Epileptic Disord 2012;14:226–34. PubMed
Metcalf CS, West PJ, Thomson KE, et al. . Development and pharmacologic characterization of the rat 6 Hz model of partial seizures. Epilepsia 2017;58:1073–84. PubMed PMC
Stables JP, Bertram E, Dudek FE, et al. . Therapy discovery for pharmacoresistant epilepsy and for disease-modifying therapeutics: summary of the NIH/NINDS/AES models II workshop. Epilepsia 2003;44:1472–8. PubMed
White HS, Smith-Yockman M, Srivastava A, et al. . Therapeutic assays for the identification and characterization of an-tiepileptic and antiepileptogenic drugs. In: Pitkänen A, Schwartzkroin PA, MoshØ SL, eds. Models of seizures and epilepsy. Amsterdam: Elsevier; 2006:539–549.
Löscher W, Nolting B.. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. IV. Protective indices. Epilepsy Res 1991;9:1–10. PubMed
Folbergrova J, Kunz WS.. Mitochondrial dysfunction in epilepsy. Mitochondrion 2012;12:35–40. PubMed
Jarrett SG, Liang LP, Hellier JL, et al. . Mitochondrial DNA damage and impaired base excision repair during epileptogenesis. Neurobiol Dis 2008;30:130–8. PubMed PMC
Callaway JK, Beart PM, Jarrott B, et al. . Incorporation of sodium channel blocking and free radical scavenging activities into a single drug, AM-36, results in profound inhibition of neuronal apoptosis. Br J Pharmacol 2001;132:1691–8. PubMed PMC
Callaway JK, Castillo-Melendez M, Giardina SF, et al. . Sodium channel blocking activity of AM-36 and sipatrigine (BW619C89): in vitro and in vivo evidence. Neuropharmacology 2004;47:146–55. PubMed
Callaway JK, Knight MJ, Watkins DJ, et al. . Delayed treatment with AM-36, a novel neuroprotective agent, reduces neuronal damage after endothelin-1-induced middle cerebral artery occlusion in conscious rats. Stroke 1999;30:2704–12. PubMed
Kolosov A, Goodchild CS, Cooke I.. Studies of synergy between morphine and a novel sodium channel blocker, CNSB002, in rat models of inflammatory and neuropathic pain. Pain Med 2010;11:106–18. PubMed
Supuran CT. Acetazolamide for the treatment of idiopathic intracranial hypertension. Expert Rev Neurother 2015;15:851–6. PubMed
Provensi G, Carta F, Nocentini A, et al. . A new kid on the block? Carbonic anhydrases as possible new targets in Alzheimer’s disease. Int J Mol Sci 2019;20:4724. PubMed PMC
Sun MK, Zhao WQ, Nelson TJ, et al. . Theta rhythm of hippocampal CA1 neuron activity: gating by GABAergic synaptic depolarization. J Neurophysiol 2001;85:269–79. PubMed
Sun MK, Alkon DL.. Pharmacological enhancement of synaptic efficacy, spatial learning, and memory through carbonic anhydrase activation in rats. J Pharmacol Exp Ther 2001;297:961–7. PubMed
Yang MT, Chien WL, Lu DH, et al. . Acetazolamide impairs fear memory consolidation in rodents. Neuropharmacology 2013; 67:412–8. PubMed
Shank RP, Doose DR, Streeter AJ, et al. . Plasma and whole blood pharmacokinetics of topiramate: the role of carbonic anhydrase. Epilepsy Res 2005;63:103–12. PubMed
Thompson PJ, Baxendale SA, Duncan JS, et al. . Effects of topiramate on cognitive function. J Neurol Neurosurg Psychiatry 2000;69:636–41. PubMed PMC