Grain Size-Related Strengthening and Softening of a Precompressed and Heat-Treated Mg-Zn-Ca Alloy

. 2020 Jan 12 ; 13 (2) : . [epub] 20200112

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31940918

Grantová podpora
17-21855S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_013/0001794 The Operational Program Research, Development and Education, The Ministry of Education, Youth, and Sports

The impact of precompression, thermal treatment and its combination on the deformation behaviour of an extruded Mg-Zn-Ca (ZX10) alloy was studied with respect to a varied average grain size. The Hall-Petch plot was used to highlight the impact in a wide grain size interval. The initial texture of the wrought alloy was characterized by X-ray diffraction. Moreover, the evolution of microstructure and texture was provided by the electron backscatter diffraction (EBSD) technique. The obtained results indicate the strong contribution of deformation-thermal treatment on the resulting deformation behaviour. Particularly, after precompression and heat treatment, higher strengthening effect was observed in the reversed tensile loaded compared to compressed samples without any change in the Hall-Petch slope throughout the grain size interval. Unlike this strengthening effect, a reversed tension-compression yield asymmetry with higher strength values in compression has been obtained.

Zobrazit více v PubMed

Zander D., Zumdick N.A. Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg–Ca–Zn alloys. Corros. Sci. 2015;93:222–233. doi: 10.1016/j.corsci.2015.01.027. DOI

Cihova M., Martinelli E., Schmutz P., Myrissa A., Schäublin R., Weinberg A.M., Uggowitzer P.J., Löffler J.F. The role of zinc in the biocorrosion behavior of resorbable Mg‒Zn‒Ca alloys. Acta Biomater. 2019;100:398–414. doi: 10.1016/j.actbio.2019.09.021. PubMed DOI

Peron M., Torgersen J., Berto F. Mg and Its Alloys for Biomedical Applications: Exploring Corrosion and Its Interplay with Mechanical Failure. Metals. 2017;7:252. doi: 10.3390/met7070252. DOI

Kainer K.U. Magnesium Alloys and their Applications. Wiley-VCH Verlag GmbH; Weinheim, Germany: 2000. DOI

Doležal P., Zapletal J., Fintová S., Trojanová Z., Greger M., Roupcová P., Podrábský T. Influence of Processing Techniques on Microstructure and Mechanical Properties of a Biodegradable Mg-3Zn-2Ca Alloy. Materials. 2016;9:880. doi: 10.3390/ma9110880. PubMed DOI PMC

Horky J., Ghaffar A., Werbach K., Mingler B., Pogatscher S., Schäublin R., Setman D., Uggowitzer P.J., Löffler J.F., Zehetbauer M.J. Exceptional Strengthening of Biodegradable Mg-Zn-Ca Alloys through High Pressure Torsion and Subsequent Heat Treatment. Materials. 2019;12:2460. doi: 10.3390/ma12152460. PubMed DOI PMC

Vinogradov A., Vasilev E., Kopylov V.I., Linderov M., Brilevesky A., Merson D. High Performance Fine-Grained Biodegradable Mg-Zn-Ca Alloys Processed by Severe Plastic Deformation. Metals. 2019;9:186. doi: 10.3390/met9020186. DOI

Kittner K., Ullmann M., Henseler T., Kawalla R., Prahl U. Microstructure and Hot Deformation Behavior of Twin Roll Cast Mg-2Zn-1Al-0.3Ca Alloy. Materials. 2019;12:1020. doi: 10.3390/ma12071020. PubMed DOI PMC

Dobron P., Drozdenko D., Olejnak J., Hegedus M., Horvath K., Vesely J., Bohlen J., Letzig D. Compressive yield stress improvement using thermomechanical treatment of extruded Mg-Zn-Ca alloy. Mater. Sci. Eng. A. 2018;730:401–409. doi: 10.1016/j.msea.2018.06.026. DOI

Dobroň P., Hegedüs M., Olejňák J., Drozdenko D., Horváth K., Bohlen J. Influence of thermomechanical treatment on tension-compression yield asymmetry of extruded Mg-Zn-Ca alloy; Proceedings of the TMS Annual Meeting & Exhibition 2019; San Antonio, TX, USA. 2019; unpublished work.

Minárik P., Jablonská E., Král R., Lipov J., Ruml T., Blawert C., Hadzima B., Chmelík F. Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy. Mater. Sci. Eng. C. 2017;73:736–742. doi: 10.1016/j.msec.2016.12.120. PubMed DOI

Bachmann F., Hielscher R., Schaeben H. Texture Analysis with MTEX—Free and Open Source Software Toolbox. Solid State Phenom. 2010;160:63–68. doi: 10.4028/www.scientific.net/SSP.160.63. DOI

Nienaber M., Kainer K.U., Letzig D., Bohlen J. Processing Effects on the Formability of Extruded Flat Products of Magnesium Alloys. Front. Mater. 2019;6 doi: 10.3389/fmats.2019.00253. DOI

Barnett M.R., Davies C.H.J., Ma X. An analytical constitutive law for twinning dominated flow in magnesium. Scr. Mater. 2005;52:627–632. doi: 10.1016/j.scriptamat.2004.11.022. DOI

Stanford N. Micro-alloying Mg with Y, Ce, Gd and La for texture modification-A comparative study. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2010;527:2669–2677. doi: 10.1016/j.msea.2009.12.036. DOI

Drozdenko D., Yamasaki M., Máthis K., Dobroň P., Lukáč P., Kizu N., Inoue S., Kawamura Y. Optimization of mechanical properties of dilute Mg-Zn-Y alloys prepared by rapid solidification. Mater. Des. 2019;181:107984. doi: 10.1016/j.matdes.2019.107984. DOI

Mayama T., Noda M., Chiba R., Kuroda M. Crystal plasticity analysis of texture development in magnesium alloy during extrusion. Int. J. Plast. 2011;27:1916–1935. doi: 10.1016/j.ijplas.2011.02.007. DOI

Partridge P.G. The crystallography and deformation modes of hexagonal close-packed metals. Metall. Rev. 1967;12:169–194.

Nie J.F., Muddle B.C. Precipitation hardening of Mg-Ca(-Zn) alloys. Scr. Mater. 1997;37:1475–1481. doi: 10.1016/S1359-6462(97)00294-7. DOI

Drozdenko D., Čapek J., Clausen B., Vinogradov A., Máthis K. Influence of the solute concentration on the anelasticity in Mg-Al alloys: A multiple-approach study. J. Alloys Compd. 2019;786:779–790. doi: 10.1016/j.jallcom.2019.01.358. DOI

Muransky O., Barnett M.R., Carr D.G., Vogel S.C., Oliver E.C. Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy: Combined in situ neutron diffraction and acoustic emission. Acta Mater. 2010;58:1503–1517. doi: 10.1016/j.actamat.2009.10.057. DOI

Wang H., Lee S.Y., Wang H., Woo W., Huang E.W., Jain J., An K. On plastic anisotropy and deformation history-driven anelasticity of an extruded magnesium alloy. Scr. Mater. 2020;176:36–41. doi: 10.1016/j.scriptamat.2019.09.025. DOI

Zhang H., Jérusalem A., Salvati E., Papadaki C., Fong K.S., Song X., Korsunsky A.M. Multi-scale mechanisms of twinning-detwinning in magnesium alloy AZ31B simulated by crystal plasticity modeling and validated via in situ synchrotron XRD and in situ SEM-EBSD. Int. J. Plast. 2019;119:43–56. doi: 10.1016/j.ijplas.2019.02.018. DOI

Bohlen J., Dobron P., Nascimento L., Parfenenko K., Chmelik F., Letzig D. The Effect of Reversed Loading Conditions on the Mechanical Behaviour of Extruded Magnesium Alloy AZ31. Acta Phys. Pol. A. 2012;122:444–449. doi: 10.12693/APhysPolA.122.444. DOI

Drozdenko D., Bohlen J., Yi S., Minarik P., Chmelik F., Dobron P. Investigating a twinning-detwinning process in wrought Mg alloys by the acoustic emission technique. Acta Mater. 2016;110:103–113. doi: 10.1016/j.actamat.2016.03.013. DOI

Nie J.-F. Precipitation and Hardening in Magnesium Alloys. Metall. Mater. Trans. A. 2012;43:3891–3939. doi: 10.1007/s11661-012-1217-2. DOI

Drozdenko D., Dobroň P., Yi S., Horváth K., Letzig D., Bohlen J. Mobility of pinned twin boundaries during mechanical loading of extruded binary Mg-1Zn alloy. Mater. Charact. 2018;139:81–88. doi: 10.1016/j.matchar.2018.02.034. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Twinning-Detwinning in Pre-Compressed and Thermally Treated ZX10 and ZN10 Alloys

. 2020 Dec 08 ; 13 (24) : . [epub] 20201208

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...