Grain Size-Related Strengthening and Softening of a Precompressed and Heat-Treated Mg-Zn-Ca Alloy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-21855S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_013/0001794
The Operational Program Research, Development and Education, The Ministry of Education, Youth, and Sports
PubMed
31940918
PubMed Central
PMC7014082
DOI
10.3390/ma13020351
PII: ma13020351
Knihovny.cz E-zdroje
- Klíčová slova
- Hall–Petch relationship, Mg alloy, deformation-thermal treatment, yield asymmetry,
- Publikační typ
- časopisecké články MeSH
The impact of precompression, thermal treatment and its combination on the deformation behaviour of an extruded Mg-Zn-Ca (ZX10) alloy was studied with respect to a varied average grain size. The Hall-Petch plot was used to highlight the impact in a wide grain size interval. The initial texture of the wrought alloy was characterized by X-ray diffraction. Moreover, the evolution of microstructure and texture was provided by the electron backscatter diffraction (EBSD) technique. The obtained results indicate the strong contribution of deformation-thermal treatment on the resulting deformation behaviour. Particularly, after precompression and heat treatment, higher strengthening effect was observed in the reversed tensile loaded compared to compressed samples without any change in the Hall-Petch slope throughout the grain size interval. Unlike this strengthening effect, a reversed tension-compression yield asymmetry with higher strength values in compression has been obtained.
Zobrazit více v PubMed
Zander D., Zumdick N.A. Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg–Ca–Zn alloys. Corros. Sci. 2015;93:222–233. doi: 10.1016/j.corsci.2015.01.027. DOI
Cihova M., Martinelli E., Schmutz P., Myrissa A., Schäublin R., Weinberg A.M., Uggowitzer P.J., Löffler J.F. The role of zinc in the biocorrosion behavior of resorbable Mg‒Zn‒Ca alloys. Acta Biomater. 2019;100:398–414. doi: 10.1016/j.actbio.2019.09.021. PubMed DOI
Peron M., Torgersen J., Berto F. Mg and Its Alloys for Biomedical Applications: Exploring Corrosion and Its Interplay with Mechanical Failure. Metals. 2017;7:252. doi: 10.3390/met7070252. DOI
Kainer K.U. Magnesium Alloys and their Applications. Wiley-VCH Verlag GmbH; Weinheim, Germany: 2000. DOI
Doležal P., Zapletal J., Fintová S., Trojanová Z., Greger M., Roupcová P., Podrábský T. Influence of Processing Techniques on Microstructure and Mechanical Properties of a Biodegradable Mg-3Zn-2Ca Alloy. Materials. 2016;9:880. doi: 10.3390/ma9110880. PubMed DOI PMC
Horky J., Ghaffar A., Werbach K., Mingler B., Pogatscher S., Schäublin R., Setman D., Uggowitzer P.J., Löffler J.F., Zehetbauer M.J. Exceptional Strengthening of Biodegradable Mg-Zn-Ca Alloys through High Pressure Torsion and Subsequent Heat Treatment. Materials. 2019;12:2460. doi: 10.3390/ma12152460. PubMed DOI PMC
Vinogradov A., Vasilev E., Kopylov V.I., Linderov M., Brilevesky A., Merson D. High Performance Fine-Grained Biodegradable Mg-Zn-Ca Alloys Processed by Severe Plastic Deformation. Metals. 2019;9:186. doi: 10.3390/met9020186. DOI
Kittner K., Ullmann M., Henseler T., Kawalla R., Prahl U. Microstructure and Hot Deformation Behavior of Twin Roll Cast Mg-2Zn-1Al-0.3Ca Alloy. Materials. 2019;12:1020. doi: 10.3390/ma12071020. PubMed DOI PMC
Dobron P., Drozdenko D., Olejnak J., Hegedus M., Horvath K., Vesely J., Bohlen J., Letzig D. Compressive yield stress improvement using thermomechanical treatment of extruded Mg-Zn-Ca alloy. Mater. Sci. Eng. A. 2018;730:401–409. doi: 10.1016/j.msea.2018.06.026. DOI
Dobroň P., Hegedüs M., Olejňák J., Drozdenko D., Horváth K., Bohlen J. Influence of thermomechanical treatment on tension-compression yield asymmetry of extruded Mg-Zn-Ca alloy; Proceedings of the TMS Annual Meeting & Exhibition 2019; San Antonio, TX, USA. 2019; unpublished work.
Minárik P., Jablonská E., Král R., Lipov J., Ruml T., Blawert C., Hadzima B., Chmelík F. Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy. Mater. Sci. Eng. C. 2017;73:736–742. doi: 10.1016/j.msec.2016.12.120. PubMed DOI
Bachmann F., Hielscher R., Schaeben H. Texture Analysis with MTEX—Free and Open Source Software Toolbox. Solid State Phenom. 2010;160:63–68. doi: 10.4028/www.scientific.net/SSP.160.63. DOI
Nienaber M., Kainer K.U., Letzig D., Bohlen J. Processing Effects on the Formability of Extruded Flat Products of Magnesium Alloys. Front. Mater. 2019;6 doi: 10.3389/fmats.2019.00253. DOI
Barnett M.R., Davies C.H.J., Ma X. An analytical constitutive law for twinning dominated flow in magnesium. Scr. Mater. 2005;52:627–632. doi: 10.1016/j.scriptamat.2004.11.022. DOI
Stanford N. Micro-alloying Mg with Y, Ce, Gd and La for texture modification-A comparative study. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2010;527:2669–2677. doi: 10.1016/j.msea.2009.12.036. DOI
Drozdenko D., Yamasaki M., Máthis K., Dobroň P., Lukáč P., Kizu N., Inoue S., Kawamura Y. Optimization of mechanical properties of dilute Mg-Zn-Y alloys prepared by rapid solidification. Mater. Des. 2019;181:107984. doi: 10.1016/j.matdes.2019.107984. DOI
Mayama T., Noda M., Chiba R., Kuroda M. Crystal plasticity analysis of texture development in magnesium alloy during extrusion. Int. J. Plast. 2011;27:1916–1935. doi: 10.1016/j.ijplas.2011.02.007. DOI
Partridge P.G. The crystallography and deformation modes of hexagonal close-packed metals. Metall. Rev. 1967;12:169–194.
Nie J.F., Muddle B.C. Precipitation hardening of Mg-Ca(-Zn) alloys. Scr. Mater. 1997;37:1475–1481. doi: 10.1016/S1359-6462(97)00294-7. DOI
Drozdenko D., Čapek J., Clausen B., Vinogradov A., Máthis K. Influence of the solute concentration on the anelasticity in Mg-Al alloys: A multiple-approach study. J. Alloys Compd. 2019;786:779–790. doi: 10.1016/j.jallcom.2019.01.358. DOI
Muransky O., Barnett M.R., Carr D.G., Vogel S.C., Oliver E.C. Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy: Combined in situ neutron diffraction and acoustic emission. Acta Mater. 2010;58:1503–1517. doi: 10.1016/j.actamat.2009.10.057. DOI
Wang H., Lee S.Y., Wang H., Woo W., Huang E.W., Jain J., An K. On plastic anisotropy and deformation history-driven anelasticity of an extruded magnesium alloy. Scr. Mater. 2020;176:36–41. doi: 10.1016/j.scriptamat.2019.09.025. DOI
Zhang H., Jérusalem A., Salvati E., Papadaki C., Fong K.S., Song X., Korsunsky A.M. Multi-scale mechanisms of twinning-detwinning in magnesium alloy AZ31B simulated by crystal plasticity modeling and validated via in situ synchrotron XRD and in situ SEM-EBSD. Int. J. Plast. 2019;119:43–56. doi: 10.1016/j.ijplas.2019.02.018. DOI
Bohlen J., Dobron P., Nascimento L., Parfenenko K., Chmelik F., Letzig D. The Effect of Reversed Loading Conditions on the Mechanical Behaviour of Extruded Magnesium Alloy AZ31. Acta Phys. Pol. A. 2012;122:444–449. doi: 10.12693/APhysPolA.122.444. DOI
Drozdenko D., Bohlen J., Yi S., Minarik P., Chmelik F., Dobron P. Investigating a twinning-detwinning process in wrought Mg alloys by the acoustic emission technique. Acta Mater. 2016;110:103–113. doi: 10.1016/j.actamat.2016.03.013. DOI
Nie J.-F. Precipitation and Hardening in Magnesium Alloys. Metall. Mater. Trans. A. 2012;43:3891–3939. doi: 10.1007/s11661-012-1217-2. DOI
Drozdenko D., Dobroň P., Yi S., Horváth K., Letzig D., Bohlen J. Mobility of pinned twin boundaries during mechanical loading of extruded binary Mg-1Zn alloy. Mater. Charact. 2018;139:81–88. doi: 10.1016/j.matchar.2018.02.034. DOI
Twinning-Detwinning in Pre-Compressed and Thermally Treated ZX10 and ZN10 Alloys